Metamath Proof Explorer


Theorem iscauf

Description: Express the property " F is a Cauchy sequence of metric D " presupposing F is a function. (Contributed by NM, 24-Jul-2007) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses iscau3.2 𝑍 = ( ℤ𝑀 )
iscau3.3 ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
iscau3.4 ( 𝜑𝑀 ∈ ℤ )
iscau4.5 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
iscau4.6 ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) = 𝐵 )
iscauf.7 ( 𝜑𝐹 : 𝑍𝑋 )
Assertion iscauf ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ) )

Proof

Step Hyp Ref Expression
1 iscau3.2 𝑍 = ( ℤ𝑀 )
2 iscau3.3 ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
3 iscau3.4 ( 𝜑𝑀 ∈ ℤ )
4 iscau4.5 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
5 iscau4.6 ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) = 𝐵 )
6 iscauf.7 ( 𝜑𝐹 : 𝑍𝑋 )
7 elfvdm ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met )
8 2 7 syl ( 𝜑𝑋 ∈ dom ∞Met )
9 cnex ℂ ∈ V
10 8 9 jctir ( 𝜑 → ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) )
11 uzssz ( ℤ𝑀 ) ⊆ ℤ
12 zsscn ℤ ⊆ ℂ
13 11 12 sstri ( ℤ𝑀 ) ⊆ ℂ
14 1 13 eqsstri 𝑍 ⊆ ℂ
15 6 14 jctir ( 𝜑 → ( 𝐹 : 𝑍𝑋𝑍 ⊆ ℂ ) )
16 elpm2r ( ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝑍𝑋𝑍 ⊆ ℂ ) ) → 𝐹 ∈ ( 𝑋pm ℂ ) )
17 10 15 16 syl2anc ( 𝜑𝐹 ∈ ( 𝑋pm ℂ ) )
18 17 biantrurd ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) )
19 2 adantr ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
20 5 adantrr ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐹𝑗 ) = 𝐵 )
21 6 adantr ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → 𝐹 : 𝑍𝑋 )
22 simprl ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → 𝑗𝑍 )
23 21 22 ffvelrnd ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐹𝑗 ) ∈ 𝑋 )
24 20 23 eqeltrrd ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → 𝐵𝑋 )
25 1 uztrn2 ( ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘𝑍 )
26 25 4 sylan2 ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐹𝑘 ) = 𝐴 )
27 ffvelrn ( ( 𝐹 : 𝑍𝑋𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ 𝑋 )
28 6 25 27 syl2an ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐹𝑘 ) ∈ 𝑋 )
29 26 28 eqeltrrd ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → 𝐴𝑋 )
30 xmetsym ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵𝑋𝐴𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) )
31 19 24 29 30 syl3anc ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) )
32 31 breq1d ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) )
33 fdm ( 𝐹 : 𝑍𝑋 → dom 𝐹 = 𝑍 )
34 33 eleq2d ( 𝐹 : 𝑍𝑋 → ( 𝑘 ∈ dom 𝐹𝑘𝑍 ) )
35 34 biimpar ( ( 𝐹 : 𝑍𝑋𝑘𝑍 ) → 𝑘 ∈ dom 𝐹 )
36 6 25 35 syl2an ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → 𝑘 ∈ dom 𝐹 )
37 36 29 jca ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( 𝑘 ∈ dom 𝐹𝐴𝑋 ) )
38 37 biantrurd ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝐴 𝐷 𝐵 ) < 𝑥 ↔ ( ( 𝑘 ∈ dom 𝐹𝐴𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) )
39 df-3an ( ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹𝐴𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) )
40 38 39 bitr4di ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝐴 𝐷 𝐵 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) )
41 32 40 bitrd ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) )
42 41 anassrs ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) )
43 42 ralbidva ( ( 𝜑𝑗𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) )
44 43 rexbidva ( 𝜑 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) )
45 44 ralbidv ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) )
46 1 2 3 4 5 iscau4 ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹𝐴𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) )
47 18 45 46 3bitr4rd ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ) )