Step |
Hyp |
Ref |
Expression |
1 |
|
iscau3.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iscau3.3 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
3 |
|
iscau3.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
iscau4.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
5 |
|
iscau4.6 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = 𝐵 ) |
6 |
|
iscauf.7 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) |
7 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ dom ∞Met ) |
9 |
|
cnex |
⊢ ℂ ∈ V |
10 |
8 9
|
jctir |
⊢ ( 𝜑 → ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ) |
11 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
12 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
13 |
11 12
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℂ |
14 |
1 13
|
eqsstri |
⊢ 𝑍 ⊆ ℂ |
15 |
6 14
|
jctir |
⊢ ( 𝜑 → ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) |
16 |
|
elpm2r |
⊢ ( ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
17 |
10 15 16
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
18 |
17
|
biantrurd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
20 |
5
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) = 𝐵 ) |
21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐹 : 𝑍 ⟶ 𝑋 ) |
22 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ 𝑍 ) |
23 |
21 22
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
24 |
20 23
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐵 ∈ 𝑋 ) |
25 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
26 |
25 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
27 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
28 |
6 25 27
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
29 |
26 28
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐴 ∈ 𝑋 ) |
30 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) ) |
31 |
19 24 29 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) ) |
32 |
31
|
breq1d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) |
33 |
|
fdm |
⊢ ( 𝐹 : 𝑍 ⟶ 𝑋 → dom 𝐹 = 𝑍 ) |
34 |
33
|
eleq2d |
⊢ ( 𝐹 : 𝑍 ⟶ 𝑋 → ( 𝑘 ∈ dom 𝐹 ↔ 𝑘 ∈ 𝑍 ) ) |
35 |
34
|
biimpar |
⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ dom 𝐹 ) |
36 |
6 25 35
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ dom 𝐹 ) |
37 |
36 29
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ) ) |
38 |
37
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐴 𝐷 𝐵 ) < 𝑥 ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
39 |
|
df-3an |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) |
40 |
38 39
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐴 𝐷 𝐵 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
41 |
32 40
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
42 |
41
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
43 |
42
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
44 |
43
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
45 |
44
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) |
46 |
1 2 3 4 5
|
iscau4 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) < 𝑥 ) ) ) ) |
47 |
18 45 46
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 ) < 𝑥 ) ) |