| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscau3.2 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							iscau3.3 | 
							⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							iscau3.4 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							iscau4.5 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							iscau4.6 | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  =  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							iscauf.7 | 
							⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ 𝑋 )  | 
						
						
							| 7 | 
							
								
							 | 
							elfvdm | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  ∈  dom  ∞Met )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑋  ∈  dom  ∞Met )  | 
						
						
							| 9 | 
							
								
							 | 
							cnex | 
							⊢ ℂ  ∈  V  | 
						
						
							| 10 | 
							
								8 9
							 | 
							jctir | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  dom  ∞Met  ∧  ℂ  ∈  V ) )  | 
						
						
							| 11 | 
							
								
							 | 
							uzssz | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ  | 
						
						
							| 12 | 
							
								
							 | 
							zsscn | 
							⊢ ℤ  ⊆  ℂ  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sstri | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℂ  | 
						
						
							| 14 | 
							
								1 13
							 | 
							eqsstri | 
							⊢ 𝑍  ⊆  ℂ  | 
						
						
							| 15 | 
							
								6 14
							 | 
							jctir | 
							⊢ ( 𝜑  →  ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑍  ⊆  ℂ ) )  | 
						
						
							| 16 | 
							
								
							 | 
							elpm2r | 
							⊢ ( ( ( 𝑋  ∈  dom  ∞Met  ∧  ℂ  ∈  V )  ∧  ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑍  ⊆  ℂ ) )  →  𝐹  ∈  ( 𝑋  ↑pm  ℂ ) )  | 
						
						
							| 17 | 
							
								10 15 16
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋  ↑pm  ℂ ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							biantrurd | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 )  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) ) ) )  | 
						
						
							| 19 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) )  | 
						
						
							| 20 | 
							
								5
							 | 
							adantrr | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑗 )  =  𝐵 )  | 
						
						
							| 21 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐹 : 𝑍 ⟶ 𝑋 )  | 
						
						
							| 22 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑗  ∈  𝑍 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐵  ∈  𝑋 )  | 
						
						
							| 25 | 
							
								1
							 | 
							uztrn2 | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 26 | 
							
								25 4
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 )  | 
						
						
							| 27 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  | 
						
						
							| 28 | 
							
								6 25 27
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝐴  ∈  𝑋 )  | 
						
						
							| 30 | 
							
								
							 | 
							xmetsym | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐴 )  =  ( 𝐴 𝐷 𝐵 ) )  | 
						
						
							| 31 | 
							
								19 24 29 30
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐵 𝐷 𝐴 )  =  ( 𝐴 𝐷 𝐵 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							breq1d | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐵 𝐷 𝐴 )  <  𝑥  ↔  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fdm | 
							⊢ ( 𝐹 : 𝑍 ⟶ 𝑋  →  dom  𝐹  =  𝑍 )  | 
						
						
							| 34 | 
							
								33
							 | 
							eleq2d | 
							⊢ ( 𝐹 : 𝑍 ⟶ 𝑋  →  ( 𝑘  ∈  dom  𝐹  ↔  𝑘  ∈  𝑍 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							biimpar | 
							⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  dom  𝐹 )  | 
						
						
							| 36 | 
							
								6 25 35
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑘  ∈  dom  𝐹 )  | 
						
						
							| 37 | 
							
								36 29
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							biantrurd | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐴 𝐷 𝐵 )  <  𝑥  ↔  ( ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 )  ↔  ( ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							bitr4di | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐴 𝐷 𝐵 )  <  𝑥  ↔  ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) ) )  | 
						
						
							| 41 | 
							
								32 40
							 | 
							bitrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝐵 𝐷 𝐴 )  <  𝑥  ↔  ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							anassrs | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐵 𝐷 𝐴 )  <  𝑥  ↔  ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							ralbidva | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 )  <  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							rexbidva | 
							⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 )  <  𝑥  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							ralbidv | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 )  <  𝑥  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) ) )  | 
						
						
							| 46 | 
							
								1 2 3 4 5
							 | 
							iscau4 | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  ( Cau ‘ 𝐷 )  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐵 )  <  𝑥 ) ) ) )  | 
						
						
							| 47 | 
							
								18 45 46
							 | 
							3bitr4rd | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  ( Cau ‘ 𝐷 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐵 𝐷 𝐴 )  <  𝑥 ) )  |