Step |
Hyp |
Ref |
Expression |
1 |
|
iscbn.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
iscbn.8 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
3 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( IndMet ‘ 𝑢 ) = ( IndMet ‘ 𝑈 ) ) |
4 |
3 2
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( IndMet ‘ 𝑢 ) = 𝐷 ) |
5 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
7 |
6
|
fveq2d |
⊢ ( 𝑢 = 𝑈 → ( CMet ‘ ( BaseSet ‘ 𝑢 ) ) = ( CMet ‘ 𝑋 ) ) |
8 |
4 7
|
eleq12d |
⊢ ( 𝑢 = 𝑈 → ( ( IndMet ‘ 𝑢 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑢 ) ) ↔ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
9 |
|
df-cbn |
⊢ CBan = { 𝑢 ∈ NrmCVec ∣ ( IndMet ‘ 𝑢 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑢 ) ) } |
10 |
8 9
|
elrab2 |
⊢ ( 𝑈 ∈ CBan ↔ ( 𝑈 ∈ NrmCVec ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |