| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscfil | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐹  ∈  ( CauFil ‘ 𝐷 )  ↔  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) ) ) ) | 
						
							| 2 |  | xmetf | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 3 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 4 | 3 | ffund | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  →  Fun  𝐷 ) | 
						
							| 5 |  | filelss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑦  ∈  𝐹 )  →  𝑦  ⊆  𝑋 ) | 
						
							| 6 | 5 | ad4ant24 | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  →  𝑦  ⊆  𝑋 ) | 
						
							| 7 |  | xpss12 | ⊢ ( ( 𝑦  ⊆  𝑋  ∧  𝑦  ⊆  𝑋 )  →  ( 𝑦  ×  𝑦 )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 8 | 6 6 7 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  →  ( 𝑦  ×  𝑦 )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 9 | 3 | fdmd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  →  dom  𝐷  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 10 | 8 9 | sseqtrrd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  →  ( 𝑦  ×  𝑦 )  ⊆  dom  𝐷 ) | 
						
							| 11 |  | funimassov | ⊢ ( ( Fun  𝐷  ∧  ( 𝑦  ×  𝑦 )  ⊆  dom  𝐷 )  →  ( ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 )  ↔  ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( 𝑧 𝐷 𝑤 )  ∈  ( 0 [,) 𝑥 ) ) ) | 
						
							| 12 | 4 10 11 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  →  ( ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 )  ↔  ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( 𝑧 𝐷 𝑤 )  ∈  ( 0 [,) 𝑥 ) ) ) | 
						
							| 13 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) )  →  0  ∈  ℝ* ) | 
						
							| 15 |  | simpllr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 16 | 15 | rpxrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 17 |  | simp-4l | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 18 | 6 | sselda | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  𝑧  ∈  𝑦 )  →  𝑧  ∈  𝑋 ) | 
						
							| 19 | 18 | adantrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 20 | 6 | sselda | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  𝑤  ∈  𝑦 )  →  𝑤  ∈  𝑋 ) | 
						
							| 21 | 20 | adantrl | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) )  →  𝑤  ∈  𝑋 ) | 
						
							| 22 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  ( 𝑧 𝐷 𝑤 )  ∈  ℝ* ) | 
						
							| 23 | 17 19 21 22 | syl3anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) )  →  ( 𝑧 𝐷 𝑤 )  ∈  ℝ* ) | 
						
							| 24 |  | xmetge0 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑧  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  0  ≤  ( 𝑧 𝐷 𝑤 ) ) | 
						
							| 25 | 17 19 21 24 | syl3anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) )  →  0  ≤  ( 𝑧 𝐷 𝑤 ) ) | 
						
							| 26 |  | elico1 | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑥  ∈  ℝ* )  →  ( ( 𝑧 𝐷 𝑤 )  ∈  ( 0 [,) 𝑥 )  ↔  ( ( 𝑧 𝐷 𝑤 )  ∈  ℝ*  ∧  0  ≤  ( 𝑧 𝐷 𝑤 )  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) ) | 
						
							| 27 |  | df-3an | ⊢ ( ( ( 𝑧 𝐷 𝑤 )  ∈  ℝ*  ∧  0  ≤  ( 𝑧 𝐷 𝑤 )  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑥 )  ↔  ( ( ( 𝑧 𝐷 𝑤 )  ∈  ℝ*  ∧  0  ≤  ( 𝑧 𝐷 𝑤 ) )  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) | 
						
							| 28 | 26 27 | bitrdi | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑥  ∈  ℝ* )  →  ( ( 𝑧 𝐷 𝑤 )  ∈  ( 0 [,) 𝑥 )  ↔  ( ( ( 𝑧 𝐷 𝑤 )  ∈  ℝ*  ∧  0  ≤  ( 𝑧 𝐷 𝑤 ) )  ∧  ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) ) | 
						
							| 29 | 28 | baibd | ⊢ ( ( ( 0  ∈  ℝ*  ∧  𝑥  ∈  ℝ* )  ∧  ( ( 𝑧 𝐷 𝑤 )  ∈  ℝ*  ∧  0  ≤  ( 𝑧 𝐷 𝑤 ) ) )  →  ( ( 𝑧 𝐷 𝑤 )  ∈  ( 0 [,) 𝑥 )  ↔  ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) | 
						
							| 30 | 14 16 23 25 29 | syl22anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  ∧  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) )  →  ( ( 𝑧 𝐷 𝑤 )  ∈  ( 0 [,) 𝑥 )  ↔  ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) | 
						
							| 31 | 30 | 2ralbidva | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  →  ( ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( 𝑧 𝐷 𝑤 )  ∈  ( 0 [,) 𝑥 )  ↔  ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) | 
						
							| 32 | 12 31 | bitrd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  𝐹 )  →  ( ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 )  ↔  ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) | 
						
							| 33 | 32 | rexbidva | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ∃ 𝑦  ∈  𝐹 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 )  ↔  ∃ 𝑦  ∈  𝐹 ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) | 
						
							| 34 | 33 | ralbidva | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) | 
						
							| 35 | 34 | pm5.32da | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) )  ↔  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) ) | 
						
							| 36 | 1 35 | bitrd | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐹  ∈  ( CauFil ‘ 𝐷 )  ↔  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( 𝑧 𝐷 𝑤 )  <  𝑥 ) ) ) |