| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvunirn | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  𝑈  ∈  ∪  ran  UnifOn ) | 
						
							| 2 |  | unieq | ⊢ ( 𝑢  =  𝑈  →  ∪  𝑢  =  ∪  𝑈 ) | 
						
							| 3 | 2 | dmeqd | ⊢ ( 𝑢  =  𝑈  →  dom  ∪  𝑢  =  dom  ∪  𝑈 ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝑢  =  𝑈  →  ( fBas ‘ dom  ∪  𝑢 )  =  ( fBas ‘ dom  ∪  𝑈 ) ) | 
						
							| 5 |  | raleq | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑣  ∈  𝑢 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣  ↔  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) ) | 
						
							| 6 | 4 5 | rabeqbidv | ⊢ ( 𝑢  =  𝑈  →  { 𝑓  ∈  ( fBas ‘ dom  ∪  𝑢 )  ∣  ∀ 𝑣  ∈  𝑢 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣 }  =  { 𝑓  ∈  ( fBas ‘ dom  ∪  𝑈 )  ∣  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣 } ) | 
						
							| 7 |  | df-cfilu | ⊢ CauFilu  =  ( 𝑢  ∈  ∪  ran  UnifOn  ↦  { 𝑓  ∈  ( fBas ‘ dom  ∪  𝑢 )  ∣  ∀ 𝑣  ∈  𝑢 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣 } ) | 
						
							| 8 |  | fvex | ⊢ ( fBas ‘ dom  ∪  𝑈 )  ∈  V | 
						
							| 9 | 8 | rabex | ⊢ { 𝑓  ∈  ( fBas ‘ dom  ∪  𝑈 )  ∣  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣 }  ∈  V | 
						
							| 10 | 6 7 9 | fvmpt | ⊢ ( 𝑈  ∈  ∪  ran  UnifOn  →  ( CauFilu ‘ 𝑈 )  =  { 𝑓  ∈  ( fBas ‘ dom  ∪  𝑈 )  ∣  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣 } ) | 
						
							| 11 | 1 10 | syl | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( CauFilu ‘ 𝑈 )  =  { 𝑓  ∈  ( fBas ‘ dom  ∪  𝑈 )  ∣  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣 } ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝐹  ∈  ( CauFilu ‘ 𝑈 )  ↔  𝐹  ∈  { 𝑓  ∈  ( fBas ‘ dom  ∪  𝑈 )  ∣  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣 } ) ) | 
						
							| 13 |  | rexeq | ⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣  ↔  ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣  ↔  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) ) | 
						
							| 15 | 14 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( fBas ‘ dom  ∪  𝑈 )  ∣  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝑓 ( 𝑎  ×  𝑎 )  ⊆  𝑣 }  ↔  ( 𝐹  ∈  ( fBas ‘ dom  ∪  𝑈 )  ∧  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) ) | 
						
							| 16 | 12 15 | bitrdi | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝐹  ∈  ( CauFilu ‘ 𝑈 )  ↔  ( 𝐹  ∈  ( fBas ‘ dom  ∪  𝑈 )  ∧  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) ) ) | 
						
							| 17 |  | ustbas2 | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  𝑋  =  dom  ∪  𝑈 ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( fBas ‘ 𝑋 )  =  ( fBas ‘ dom  ∪  𝑈 ) ) | 
						
							| 19 | 18 | eleq2d | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ↔  𝐹  ∈  ( fBas ‘ dom  ∪  𝑈 ) ) ) | 
						
							| 20 | 19 | anbi1d | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 )  ↔  ( 𝐹  ∈  ( fBas ‘ dom  ∪  𝑈 )  ∧  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) ) ) | 
						
							| 21 | 16 20 | bitr4d | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝐹  ∈  ( CauFilu ‘ 𝑈 )  ↔  ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) ) ) |