| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							trgcgrg.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							trgcgrg.m | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							trgcgrg.r | 
							⊢  ∼   =  ( cgrG ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							trgcgrg.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							iscgrglt.d | 
							⊢ ( 𝜑  →  𝐷  ⊆  ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							iscgrglt.a | 
							⊢ ( 𝜑  →  𝐴 : 𝐷 ⟶ 𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							iscgrglt.b | 
							⊢ ( 𝜑  →  𝐵 : 𝐷 ⟶ 𝑃 )  | 
						
						
							| 8 | 
							
								1 2 3 4 5 6 7
							 | 
							iscgrgd | 
							⊢ ( 𝜑  →  ( 𝐴  ∼  𝐵  ↔  ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  dom  𝐴  ∧  𝑗  ∈  dom  𝐴 ) )  ∧  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) )  ∧  𝑖  <  𝑗 )  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3exp | 
							⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  dom  𝐴  ∧  𝑗  ∈  dom  𝐴 ) )  →  ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) )  →  ( 𝑖  <  𝑗  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ralimdvva | 
							⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) )  →  ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( 𝑖  <  𝑗  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑘  =  𝑖  →  ( 𝑘  <  𝑙  ↔  𝑖  <  𝑙 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑖  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑖 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq1d | 
							⊢ ( 𝑘  =  𝑖  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑙 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑖  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑖 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							⊢ ( 𝑘  =  𝑖  →  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑙 ) ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							eqeq12d | 
							⊢ ( 𝑘  =  𝑖  →  ( ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) )  ↔  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							imbi12d | 
							⊢ ( 𝑘  =  𝑖  →  ( ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) )  ↔  ( 𝑖  <  𝑙  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑙 ) ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑙  =  𝑗  →  ( 𝑖  <  𝑙  ↔  𝑖  <  𝑗 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝑗  →  ( 𝐴 ‘ 𝑙 )  =  ( 𝐴 ‘ 𝑗 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							oveq2d | 
							⊢ ( 𝑙  =  𝑗  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝑗  →  ( 𝐵 ‘ 𝑙 )  =  ( 𝐵 ‘ 𝑗 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq2d | 
							⊢ ( 𝑙  =  𝑗  →  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							eqeq12d | 
							⊢ ( 𝑙  =  𝑗  →  ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑙 ) )  ↔  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) )  | 
						
						
							| 25 | 
							
								19 24
							 | 
							imbi12d | 
							⊢ ( 𝑙  =  𝑗  →  ( ( 𝑖  <  𝑙  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑙 ) ) )  ↔  ( 𝑖  <  𝑗  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 26 | 
							
								18 25
							 | 
							cbvral2vw | 
							⊢ ( ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) )  ↔  ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( 𝑖  <  𝑗  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  <  𝑗 )  →  𝑖  ∈  dom  𝐴 )  | 
						
						
							| 28 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  <  𝑗 )  →  𝑗  ∈  dom  𝐴 )  | 
						
						
							| 29 | 
							
								
							 | 
							simp-4r | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  <  𝑗 )  →  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  | 
						
						
							| 30 | 
							
								27 28 29
							 | 
							jca31 | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  <  𝑗 )  →  ( ( 𝑖  ∈  dom  𝐴  ∧  𝑗  ∈  dom  𝐴 )  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  <  𝑗 )  →  𝑖  <  𝑗 )  | 
						
						
							| 32 | 
							
								18 25
							 | 
							rspc2va | 
							⊢ ( ( ( 𝑖  ∈  dom  𝐴  ∧  𝑗  ∈  dom  𝐴 )  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  →  ( 𝑖  <  𝑗  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) )  | 
						
						
							| 33 | 
							
								30 31 32
							 | 
							sylc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  <  𝑗 )  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ( Itv ‘ 𝐺 )  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 35 | 
							
								4
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 36 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝐴 : 𝐷 ⟶ 𝑃 )  | 
						
						
							| 37 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝑖  ∈  dom  𝐴 )  | 
						
						
							| 38 | 
							
								36
							 | 
							fdmd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  dom  𝐴  =  𝐷 )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							eleqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝑖  ∈  𝐷 )  | 
						
						
							| 40 | 
							
								36 39
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  ( 𝐴 ‘ 𝑖 )  ∈  𝑃 )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  ( 𝐴 ‘ 𝑖 )  ∈  𝑃 )  | 
						
						
							| 42 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝐵 : 𝐷 ⟶ 𝑃 )  | 
						
						
							| 43 | 
							
								42 39
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  ( 𝐵 ‘ 𝑖 )  ∈  𝑃 )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  ( 𝐵 ‘ 𝑖 )  ∈  𝑃 )  | 
						
						
							| 45 | 
							
								1 2 34 35 41 44
							 | 
							tgcgrtriv | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  𝑖  =  𝑗 )  | 
						
						
							| 47 | 
							
								46
							 | 
							fveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  ( 𝐴 ‘ 𝑖 )  =  ( 𝐴 ‘ 𝑗 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) ) )  | 
						
						
							| 49 | 
							
								46
							 | 
							fveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑗 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 51 | 
							
								45 48 50
							 | 
							3eqtr3d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl3r | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑖  =  𝑗 )  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 53 | 
							
								4
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 54 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝑗  ∈  dom  𝐴 )  | 
						
						
							| 55 | 
							
								54 38
							 | 
							eleqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝑗  ∈  𝐷 )  | 
						
						
							| 56 | 
							
								36 55
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  ( 𝐴 ‘ 𝑗 )  ∈  𝑃 )  | 
						
						
							| 57 | 
							
								56
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( 𝐴 ‘ 𝑗 )  ∈  𝑃 )  | 
						
						
							| 58 | 
							
								57
							 | 
							adantl3r | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( 𝐴 ‘ 𝑗 )  ∈  𝑃 )  | 
						
						
							| 59 | 
							
								40
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( 𝐴 ‘ 𝑖 )  ∈  𝑃 )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantl3r | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( 𝐴 ‘ 𝑖 )  ∈  𝑃 )  | 
						
						
							| 61 | 
							
								42 55
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  ( 𝐵 ‘ 𝑗 )  ∈  𝑃 )  | 
						
						
							| 62 | 
							
								61
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( 𝐵 ‘ 𝑗 )  ∈  𝑃 )  | 
						
						
							| 63 | 
							
								62
							 | 
							adantl3r | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( 𝐵 ‘ 𝑗 )  ∈  𝑃 )  | 
						
						
							| 64 | 
							
								43
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( 𝐵 ‘ 𝑖 )  ∈  𝑃 )  | 
						
						
							| 65 | 
							
								64
							 | 
							adantl3r | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( 𝐵 ‘ 𝑖 )  ∈  𝑃 )  | 
						
						
							| 66 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  𝑗  ∈  dom  𝐴 )  | 
						
						
							| 67 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  𝑖  ∈  dom  𝐴 )  | 
						
						
							| 68 | 
							
								
							 | 
							simp-4r | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  | 
						
						
							| 69 | 
							
								66 67 68
							 | 
							jca31 | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( ( 𝑗  ∈  dom  𝐴  ∧  𝑖  ∈  dom  𝐴 )  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) ) )  | 
						
						
							| 70 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  𝑗  <  𝑖 )  | 
						
						
							| 71 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝑘  <  𝑙  ↔  𝑗  <  𝑙 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑗 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							oveq1d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑙 ) ) )  | 
						
						
							| 74 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑗  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑗 ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							oveq1d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑙 ) ) )  | 
						
						
							| 76 | 
							
								73 75
							 | 
							eqeq12d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) )  ↔  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  | 
						
						
							| 77 | 
							
								71 76
							 | 
							imbi12d | 
							⊢ ( 𝑘  =  𝑗  →  ( ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) )  ↔  ( 𝑗  <  𝑙  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑙 ) ) ) ) )  | 
						
						
							| 78 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑙  =  𝑖  →  ( 𝑗  <  𝑙  ↔  𝑗  <  𝑖 ) )  | 
						
						
							| 79 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝑖  →  ( 𝐴 ‘ 𝑙 )  =  ( 𝐴 ‘ 𝑖 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							oveq2d | 
							⊢ ( 𝑙  =  𝑖  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑖 ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝑖  →  ( 𝐵 ‘ 𝑙 )  =  ( 𝐵 ‘ 𝑖 ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							oveq2d | 
							⊢ ( 𝑙  =  𝑖  →  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑖 ) ) )  | 
						
						
							| 83 | 
							
								80 82
							 | 
							eqeq12d | 
							⊢ ( 𝑙  =  𝑖  →  ( ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑙 ) )  ↔  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑖 ) ) ) )  | 
						
						
							| 84 | 
							
								78 83
							 | 
							imbi12d | 
							⊢ ( 𝑙  =  𝑖  →  ( ( 𝑗  <  𝑙  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑙 ) ) )  ↔  ( 𝑗  <  𝑖  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 85 | 
							
								77 84
							 | 
							rspc2va | 
							⊢ ( ( ( 𝑗  ∈  dom  𝐴  ∧  𝑖  ∈  dom  𝐴 )  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  →  ( 𝑗  <  𝑖  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑖 ) ) ) )  | 
						
						
							| 86 | 
							
								69 70 85
							 | 
							sylc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( ( 𝐴 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐵 ‘ 𝑖 ) ) )  | 
						
						
							| 87 | 
							
								1 2 34 53 58 60 63 65 86
							 | 
							tgcgrcomlr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  ∧  𝑗  <  𝑖 )  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 88 | 
							
								6
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  𝐴  =  𝐷 )  | 
						
						
							| 89 | 
							
								88 5
							 | 
							eqsstrd | 
							⊢ ( 𝜑  →  dom  𝐴  ⊆  ℝ )  | 
						
						
							| 90 | 
							
								89
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  dom  𝐴  ⊆  ℝ )  | 
						
						
							| 91 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝑖  ∈  dom  𝐴 )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							sseldd | 
							⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝑖  ∈  ℝ )  | 
						
						
							| 93 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝑗  ∈  dom  𝐴 )  | 
						
						
							| 94 | 
							
								90 93
							 | 
							sseldd | 
							⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  𝑗  ∈  ℝ )  | 
						
						
							| 95 | 
							
								92 94
							 | 
							lttri4d | 
							⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  ( 𝑖  <  𝑗  ∨  𝑖  =  𝑗  ∨  𝑗  <  𝑖 ) )  | 
						
						
							| 96 | 
							
								33 52 87 95
							 | 
							mpjao3dan | 
							⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  𝑖  ∈  dom  𝐴 )  ∧  𝑗  ∈  dom  𝐴 )  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							anasss | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  ∧  ( 𝑖  ∈  dom  𝐴  ∧  𝑗  ∈  dom  𝐴 ) )  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							ralrimivva | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) ) )  →  ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ∀ 𝑘  ∈  dom  𝐴 ∀ 𝑙  ∈  dom  𝐴 ( 𝑘  <  𝑙  →  ( ( 𝐴 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑙 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐵 ‘ 𝑙 ) ) )  →  ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) )  | 
						
						
							| 100 | 
							
								26 99
							 | 
							biimtrrid | 
							⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( 𝑖  <  𝑗  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) )  →  ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) )  | 
						
						
							| 101 | 
							
								11 100
							 | 
							impbid | 
							⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) )  ↔  ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( 𝑖  <  𝑗  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) ) )  | 
						
						
							| 102 | 
							
								8 101
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( 𝐴  ∼  𝐵  ↔  ∀ 𝑖  ∈  dom  𝐴 ∀ 𝑗  ∈  dom  𝐴 ( 𝑖  <  𝑗  →  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑗 ) ) ) ) )  |