Metamath Proof Explorer


Theorem iscgrglt

Description: The property for two sequences A and B of points to be congruent, where the congruence is only required for indices verifying a less-than relation. (Contributed by Thierry Arnoux, 7-Oct-2020)

Ref Expression
Hypotheses trgcgrg.p 𝑃 = ( Base ‘ 𝐺 )
trgcgrg.m = ( dist ‘ 𝐺 )
trgcgrg.r = ( cgrG ‘ 𝐺 )
trgcgrg.g ( 𝜑𝐺 ∈ TarskiG )
iscgrglt.d ( 𝜑𝐷 ⊆ ℝ )
iscgrglt.a ( 𝜑𝐴 : 𝐷𝑃 )
iscgrglt.b ( 𝜑𝐵 : 𝐷𝑃 )
Assertion iscgrglt ( 𝜑 → ( 𝐴 𝐵 ↔ ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 trgcgrg.p 𝑃 = ( Base ‘ 𝐺 )
2 trgcgrg.m = ( dist ‘ 𝐺 )
3 trgcgrg.r = ( cgrG ‘ 𝐺 )
4 trgcgrg.g ( 𝜑𝐺 ∈ TarskiG )
5 iscgrglt.d ( 𝜑𝐷 ⊆ ℝ )
6 iscgrglt.a ( 𝜑𝐴 : 𝐷𝑃 )
7 iscgrglt.b ( 𝜑𝐵 : 𝐷𝑃 )
8 1 2 3 4 5 6 7 iscgrgd ( 𝜑 → ( 𝐴 𝐵 ↔ ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) )
9 simp2 ( ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ) ) ∧ ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ∧ 𝑖 < 𝑗 ) → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
10 9 3exp ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ) ) → ( ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) → ( 𝑖 < 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) ) )
11 10 ralimdvva ( 𝜑 → ( ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) → ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) ) )
12 breq1 ( 𝑘 = 𝑖 → ( 𝑘 < 𝑙𝑖 < 𝑙 ) )
13 fveq2 ( 𝑘 = 𝑖 → ( 𝐴𝑘 ) = ( 𝐴𝑖 ) )
14 13 oveq1d ( 𝑘 = 𝑖 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐴𝑖 ) ( 𝐴𝑙 ) ) )
15 fveq2 ( 𝑘 = 𝑖 → ( 𝐵𝑘 ) = ( 𝐵𝑖 ) )
16 15 oveq1d ( 𝑘 = 𝑖 → ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑙 ) ) )
17 14 16 eqeq12d ( 𝑘 = 𝑖 → ( ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ↔ ( ( 𝐴𝑖 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑙 ) ) ) )
18 12 17 imbi12d ( 𝑘 = 𝑖 → ( ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ↔ ( 𝑖 < 𝑙 → ( ( 𝐴𝑖 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑙 ) ) ) ) )
19 breq2 ( 𝑙 = 𝑗 → ( 𝑖 < 𝑙𝑖 < 𝑗 ) )
20 fveq2 ( 𝑙 = 𝑗 → ( 𝐴𝑙 ) = ( 𝐴𝑗 ) )
21 20 oveq2d ( 𝑙 = 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑙 ) ) = ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) )
22 fveq2 ( 𝑙 = 𝑗 → ( 𝐵𝑙 ) = ( 𝐵𝑗 ) )
23 22 oveq2d ( 𝑙 = 𝑗 → ( ( 𝐵𝑖 ) ( 𝐵𝑙 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
24 21 23 eqeq12d ( 𝑙 = 𝑗 → ( ( ( 𝐴𝑖 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑙 ) ) ↔ ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) )
25 19 24 imbi12d ( 𝑙 = 𝑗 → ( ( 𝑖 < 𝑙 → ( ( 𝐴𝑖 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑙 ) ) ) ↔ ( 𝑖 < 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) ) )
26 18 25 cbvral2vw ( ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ↔ ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) )
27 simpllr ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ dom 𝐴 )
28 simplr ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ dom 𝐴 )
29 simp-4r ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) )
30 27 28 29 jca31 ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → ( ( 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ) ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) )
31 simpr ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → 𝑖 < 𝑗 )
32 18 25 rspc2va ( ( ( 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ) ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) → ( 𝑖 < 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) )
33 30 31 32 sylc ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
34 eqid ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 )
35 4 ad3antrrr ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → 𝐺 ∈ TarskiG )
36 6 ad2antrr ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝐴 : 𝐷𝑃 )
37 simplr ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑖 ∈ dom 𝐴 )
38 36 fdmd ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → dom 𝐴 = 𝐷 )
39 37 38 eleqtrd ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑖𝐷 )
40 36 39 ffvelrnd ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝐴𝑖 ) ∈ 𝑃 )
41 40 adantr ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( 𝐴𝑖 ) ∈ 𝑃 )
42 7 ad2antrr ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝐵 : 𝐷𝑃 )
43 42 39 ffvelrnd ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝐵𝑖 ) ∈ 𝑃 )
44 43 adantr ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( 𝐵𝑖 ) ∈ 𝑃 )
45 1 2 34 35 41 44 tgcgrtriv ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐴𝑖 ) ( 𝐴𝑖 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑖 ) ) )
46 simpr ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → 𝑖 = 𝑗 )
47 46 fveq2d ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( 𝐴𝑖 ) = ( 𝐴𝑗 ) )
48 47 oveq2d ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐴𝑖 ) ( 𝐴𝑖 ) ) = ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) )
49 46 fveq2d ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( 𝐵𝑖 ) = ( 𝐵𝑗 ) )
50 49 oveq2d ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐵𝑖 ) ( 𝐵𝑖 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
51 45 48 50 3eqtr3d ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
52 51 adantl3r ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
53 4 ad4antr ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → 𝐺 ∈ TarskiG )
54 simpr ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑗 ∈ dom 𝐴 )
55 54 38 eleqtrd ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑗𝐷 )
56 36 55 ffvelrnd ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝐴𝑗 ) ∈ 𝑃 )
57 56 adantr ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐴𝑗 ) ∈ 𝑃 )
58 57 adantl3r ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐴𝑗 ) ∈ 𝑃 )
59 40 adantr ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐴𝑖 ) ∈ 𝑃 )
60 59 adantl3r ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐴𝑖 ) ∈ 𝑃 )
61 42 55 ffvelrnd ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝐵𝑗 ) ∈ 𝑃 )
62 61 adantr ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐵𝑗 ) ∈ 𝑃 )
63 62 adantl3r ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐵𝑗 ) ∈ 𝑃 )
64 43 adantr ( ( ( ( 𝜑𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐵𝑖 ) ∈ 𝑃 )
65 64 adantl3r ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐵𝑖 ) ∈ 𝑃 )
66 simplr ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → 𝑗 ∈ dom 𝐴 )
67 simpllr ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → 𝑖 ∈ dom 𝐴 )
68 simp-4r ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) )
69 66 67 68 jca31 ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( ( 𝑗 ∈ dom 𝐴𝑖 ∈ dom 𝐴 ) ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) )
70 simpr ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → 𝑗 < 𝑖 )
71 breq1 ( 𝑘 = 𝑗 → ( 𝑘 < 𝑙𝑗 < 𝑙 ) )
72 fveq2 ( 𝑘 = 𝑗 → ( 𝐴𝑘 ) = ( 𝐴𝑗 ) )
73 72 oveq1d ( 𝑘 = 𝑗 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐴𝑗 ) ( 𝐴𝑙 ) ) )
74 fveq2 ( 𝑘 = 𝑗 → ( 𝐵𝑘 ) = ( 𝐵𝑗 ) )
75 74 oveq1d ( 𝑘 = 𝑗 → ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑙 ) ) )
76 73 75 eqeq12d ( 𝑘 = 𝑗 → ( ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ↔ ( ( 𝐴𝑗 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑙 ) ) ) )
77 71 76 imbi12d ( 𝑘 = 𝑗 → ( ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ↔ ( 𝑗 < 𝑙 → ( ( 𝐴𝑗 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑙 ) ) ) ) )
78 breq2 ( 𝑙 = 𝑖 → ( 𝑗 < 𝑙𝑗 < 𝑖 ) )
79 fveq2 ( 𝑙 = 𝑖 → ( 𝐴𝑙 ) = ( 𝐴𝑖 ) )
80 79 oveq2d ( 𝑙 = 𝑖 → ( ( 𝐴𝑗 ) ( 𝐴𝑙 ) ) = ( ( 𝐴𝑗 ) ( 𝐴𝑖 ) ) )
81 fveq2 ( 𝑙 = 𝑖 → ( 𝐵𝑙 ) = ( 𝐵𝑖 ) )
82 81 oveq2d ( 𝑙 = 𝑖 → ( ( 𝐵𝑗 ) ( 𝐵𝑙 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑖 ) ) )
83 80 82 eqeq12d ( 𝑙 = 𝑖 → ( ( ( 𝐴𝑗 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑙 ) ) ↔ ( ( 𝐴𝑗 ) ( 𝐴𝑖 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑖 ) ) ) )
84 78 83 imbi12d ( 𝑙 = 𝑖 → ( ( 𝑗 < 𝑙 → ( ( 𝐴𝑗 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑙 ) ) ) ↔ ( 𝑗 < 𝑖 → ( ( 𝐴𝑗 ) ( 𝐴𝑖 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑖 ) ) ) ) )
85 77 84 rspc2va ( ( ( 𝑗 ∈ dom 𝐴𝑖 ∈ dom 𝐴 ) ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) → ( 𝑗 < 𝑖 → ( ( 𝐴𝑗 ) ( 𝐴𝑖 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑖 ) ) ) )
86 69 70 85 sylc ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( ( 𝐴𝑗 ) ( 𝐴𝑖 ) ) = ( ( 𝐵𝑗 ) ( 𝐵𝑖 ) ) )
87 1 2 34 53 58 60 63 65 86 tgcgrcomlr ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
88 6 fdmd ( 𝜑 → dom 𝐴 = 𝐷 )
89 88 5 eqsstrd ( 𝜑 → dom 𝐴 ⊆ ℝ )
90 89 ad3antrrr ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → dom 𝐴 ⊆ ℝ )
91 simplr ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑖 ∈ dom 𝐴 )
92 90 91 sseldd ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑖 ∈ ℝ )
93 simpr ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑗 ∈ dom 𝐴 )
94 90 93 sseldd ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑗 ∈ ℝ )
95 92 94 lttri4d ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖 ) )
96 33 52 87 95 mpjao3dan ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
97 96 anasss ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) ∧ ( 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ) ) → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
98 97 ralrimivva ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) ) → ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) )
99 98 ex ( 𝜑 → ( ∀ 𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴𝑘 ) ( 𝐴𝑙 ) ) = ( ( 𝐵𝑘 ) ( 𝐵𝑙 ) ) ) → ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) )
100 26 99 syl5bir ( 𝜑 → ( ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) → ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) )
101 11 100 impbid ( 𝜑 → ( ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ↔ ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) ) )
102 8 101 bitrd ( 𝜑 → ( 𝐴 𝐵 ↔ ∀ 𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴𝑖 ) ( 𝐴𝑗 ) ) = ( ( 𝐵𝑖 ) ( 𝐵𝑗 ) ) ) ) )