Step |
Hyp |
Ref |
Expression |
1 |
|
isch |
⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ) ) |
2 |
|
alcom |
⊢ ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) |
3 |
|
19.23v |
⊢ ( ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ∃ 𝑓 ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
4
|
elima2 |
⊢ ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) ) |
6 |
5
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) → 𝑥 ∈ 𝐻 ) ↔ ( ∃ 𝑓 ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) |
7 |
3 6
|
bitr4i |
⊢ ( ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) → 𝑥 ∈ 𝐻 ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) → 𝑥 ∈ 𝐻 ) ) |
9 |
|
dfss2 |
⊢ ( ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) → 𝑥 ∈ 𝐻 ) ) |
10 |
8 9
|
bitr4i |
⊢ ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ) |
11 |
2 10
|
bitri |
⊢ ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ) |
12 |
|
nnex |
⊢ ℕ ∈ V |
13 |
|
elmapg |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ℕ ∈ V ) → ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝐻 ) ) |
14 |
12 13
|
mpan2 |
⊢ ( 𝐻 ∈ Sℋ → ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝐻 ) ) |
15 |
14
|
anbi1d |
⊢ ( 𝐻 ∈ Sℋ → ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) ↔ ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ) ) |
16 |
15
|
imbi1d |
⊢ ( 𝐻 ∈ Sℋ → ( ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
17 |
16
|
2albidv |
⊢ ( 𝐻 ∈ Sℋ → ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
18 |
11 17
|
bitr3id |
⊢ ( 𝐻 ∈ Sℋ → ( ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ↔ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
19 |
18
|
pm5.32i |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ) ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
20 |
1 19
|
bitri |
⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |