Step |
Hyp |
Ref |
Expression |
1 |
|
isclat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
isclat.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
3 |
|
isclat.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
4 |
|
fveq2 |
⊢ ( 𝑙 = 𝐾 → ( lub ‘ 𝑙 ) = ( lub ‘ 𝐾 ) ) |
5 |
4 2
|
eqtr4di |
⊢ ( 𝑙 = 𝐾 → ( lub ‘ 𝑙 ) = 𝑈 ) |
6 |
5
|
dmeqd |
⊢ ( 𝑙 = 𝐾 → dom ( lub ‘ 𝑙 ) = dom 𝑈 ) |
7 |
|
fveq2 |
⊢ ( 𝑙 = 𝐾 → ( Base ‘ 𝑙 ) = ( Base ‘ 𝐾 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑙 = 𝐾 → ( Base ‘ 𝑙 ) = 𝐵 ) |
9 |
8
|
pweqd |
⊢ ( 𝑙 = 𝐾 → 𝒫 ( Base ‘ 𝑙 ) = 𝒫 𝐵 ) |
10 |
6 9
|
eqeq12d |
⊢ ( 𝑙 = 𝐾 → ( dom ( lub ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ↔ dom 𝑈 = 𝒫 𝐵 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑙 = 𝐾 → ( glb ‘ 𝑙 ) = ( glb ‘ 𝐾 ) ) |
12 |
11 3
|
eqtr4di |
⊢ ( 𝑙 = 𝐾 → ( glb ‘ 𝑙 ) = 𝐺 ) |
13 |
12
|
dmeqd |
⊢ ( 𝑙 = 𝐾 → dom ( glb ‘ 𝑙 ) = dom 𝐺 ) |
14 |
13 9
|
eqeq12d |
⊢ ( 𝑙 = 𝐾 → ( dom ( glb ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ↔ dom 𝐺 = 𝒫 𝐵 ) ) |
15 |
10 14
|
anbi12d |
⊢ ( 𝑙 = 𝐾 → ( ( dom ( lub ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ∧ dom ( glb ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ) ↔ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |
16 |
|
df-clat |
⊢ CLat = { 𝑙 ∈ Poset ∣ ( dom ( lub ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ∧ dom ( glb ‘ 𝑙 ) = 𝒫 ( Base ‘ 𝑙 ) ) } |
17 |
15 16
|
elrab2 |
⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵 ) ) ) |