| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isclat.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							isclat.u | 
							⊢ 𝑈  =  ( lub ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							isclat.g | 
							⊢ 𝐺  =  ( glb ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝐾  →  ( lub ‘ 𝑙 )  =  ( lub ‘ 𝐾 ) )  | 
						
						
							| 5 | 
							
								4 2
							 | 
							eqtr4di | 
							⊢ ( 𝑙  =  𝐾  →  ( lub ‘ 𝑙 )  =  𝑈 )  | 
						
						
							| 6 | 
							
								5
							 | 
							dmeqd | 
							⊢ ( 𝑙  =  𝐾  →  dom  ( lub ‘ 𝑙 )  =  dom  𝑈 )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝐾  →  ( Base ‘ 𝑙 )  =  ( Base ‘ 𝐾 ) )  | 
						
						
							| 8 | 
							
								7 1
							 | 
							eqtr4di | 
							⊢ ( 𝑙  =  𝐾  →  ( Base ‘ 𝑙 )  =  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							pweqd | 
							⊢ ( 𝑙  =  𝐾  →  𝒫  ( Base ‘ 𝑙 )  =  𝒫  𝐵 )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							eqeq12d | 
							⊢ ( 𝑙  =  𝐾  →  ( dom  ( lub ‘ 𝑙 )  =  𝒫  ( Base ‘ 𝑙 )  ↔  dom  𝑈  =  𝒫  𝐵 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝐾  →  ( glb ‘ 𝑙 )  =  ( glb ‘ 𝐾 ) )  | 
						
						
							| 12 | 
							
								11 3
							 | 
							eqtr4di | 
							⊢ ( 𝑙  =  𝐾  →  ( glb ‘ 𝑙 )  =  𝐺 )  | 
						
						
							| 13 | 
							
								12
							 | 
							dmeqd | 
							⊢ ( 𝑙  =  𝐾  →  dom  ( glb ‘ 𝑙 )  =  dom  𝐺 )  | 
						
						
							| 14 | 
							
								13 9
							 | 
							eqeq12d | 
							⊢ ( 𝑙  =  𝐾  →  ( dom  ( glb ‘ 𝑙 )  =  𝒫  ( Base ‘ 𝑙 )  ↔  dom  𝐺  =  𝒫  𝐵 ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							anbi12d | 
							⊢ ( 𝑙  =  𝐾  →  ( ( dom  ( lub ‘ 𝑙 )  =  𝒫  ( Base ‘ 𝑙 )  ∧  dom  ( glb ‘ 𝑙 )  =  𝒫  ( Base ‘ 𝑙 ) )  ↔  ( dom  𝑈  =  𝒫  𝐵  ∧  dom  𝐺  =  𝒫  𝐵 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							df-clat | 
							⊢ CLat  =  { 𝑙  ∈  Poset  ∣  ( dom  ( lub ‘ 𝑙 )  =  𝒫  ( Base ‘ 𝑙 )  ∧  dom  ( glb ‘ 𝑙 )  =  𝒫  ( Base ‘ 𝑙 ) ) }  | 
						
						
							| 17 | 
							
								15 16
							 | 
							elrab2 | 
							⊢ ( 𝐾  ∈  CLat  ↔  ( 𝐾  ∈  Poset  ∧  ( dom  𝑈  =  𝒫  𝐵  ∧  dom  𝐺  =  𝒫  𝐵 ) ) )  |