| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isclatd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
isclatd.u |
⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐾 ) ) |
| 3 |
|
isclatd.g |
⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐾 ) ) |
| 4 |
|
isclatd.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
| 5 |
|
isclatd.1 |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → 𝑠 ∈ dom 𝑈 ) |
| 6 |
|
isclatd.2 |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐵 ) → 𝑠 ∈ dom 𝐺 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 8 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 9 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
| 10 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 11 |
7 8 9 10 4
|
lubdm |
⊢ ( 𝜑 → dom ( lub ‘ 𝐾 ) = { 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) } ) |
| 12 |
|
ssrab2 |
⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) } ⊆ 𝒫 ( Base ‘ 𝐾 ) |
| 13 |
11 12
|
eqsstrdi |
⊢ ( 𝜑 → dom ( lub ‘ 𝐾 ) ⊆ 𝒫 ( Base ‘ 𝐾 ) ) |
| 14 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → 𝑠 ⊆ 𝐵 ) |
| 15 |
14 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ dom 𝑈 ) |
| 16 |
15
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ∈ dom 𝑈 ) |
| 17 |
|
dfss3 |
⊢ ( 𝒫 𝐵 ⊆ dom 𝑈 ↔ ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ∈ dom 𝑈 ) |
| 18 |
16 17
|
sylibr |
⊢ ( 𝜑 → 𝒫 𝐵 ⊆ dom 𝑈 ) |
| 19 |
1
|
pweqd |
⊢ ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ) |
| 20 |
2
|
dmeqd |
⊢ ( 𝜑 → dom 𝑈 = dom ( lub ‘ 𝐾 ) ) |
| 21 |
18 19 20
|
3sstr3d |
⊢ ( 𝜑 → 𝒫 ( Base ‘ 𝐾 ) ⊆ dom ( lub ‘ 𝐾 ) ) |
| 22 |
13 21
|
eqssd |
⊢ ( 𝜑 → dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) |
| 23 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 24 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑡 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑡 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 25 |
7 8 23 24 4
|
glbdm |
⊢ ( 𝜑 → dom ( glb ‘ 𝐾 ) = { 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) |
| 26 |
|
ssrab2 |
⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑡 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ⊆ 𝒫 ( Base ‘ 𝐾 ) |
| 27 |
25 26
|
eqsstrdi |
⊢ ( 𝜑 → dom ( glb ‘ 𝐾 ) ⊆ 𝒫 ( Base ‘ 𝐾 ) ) |
| 28 |
14 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ dom 𝐺 ) |
| 29 |
28
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ∈ dom 𝐺 ) |
| 30 |
|
dfss3 |
⊢ ( 𝒫 𝐵 ⊆ dom 𝐺 ↔ ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ∈ dom 𝐺 ) |
| 31 |
29 30
|
sylibr |
⊢ ( 𝜑 → 𝒫 𝐵 ⊆ dom 𝐺 ) |
| 32 |
3
|
dmeqd |
⊢ ( 𝜑 → dom 𝐺 = dom ( glb ‘ 𝐾 ) ) |
| 33 |
31 19 32
|
3sstr3d |
⊢ ( 𝜑 → 𝒫 ( Base ‘ 𝐾 ) ⊆ dom ( glb ‘ 𝐾 ) ) |
| 34 |
27 33
|
eqssd |
⊢ ( 𝜑 → dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) |
| 35 |
7 9 23
|
isclat |
⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) ) ) |
| 36 |
35
|
biimpri |
⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) ) → 𝐾 ∈ CLat ) |
| 37 |
4 22 34 36
|
syl12anc |
⊢ ( 𝜑 → 𝐾 ∈ CLat ) |