Step |
Hyp |
Ref |
Expression |
1 |
|
iscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
cldval |
⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) |
3 |
2
|
eleq2d |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ 𝑆 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ) ) |
4 |
|
difeq2 |
⊢ ( 𝑥 = 𝑆 → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑆 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ↔ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) |
6 |
5
|
elrab |
⊢ ( 𝑆 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 } ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) |
7 |
3 6
|
bitrdi |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
8 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
9 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
11 |
10
|
anbi1d |
⊢ ( 𝐽 ∈ Top → ( ( 𝑆 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |
12 |
7 11
|
bitrd |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ∈ 𝐽 ) ) ) |