Metamath Proof Explorer


Theorem iscld2

Description: A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006)

Ref Expression
Hypothesis iscld.1 𝑋 = 𝐽
Assertion iscld2 ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋𝑆 ) ∈ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 iscld.1 𝑋 = 𝐽
2 1 iscld ( 𝐽 ∈ Top → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑆𝑋 ∧ ( 𝑋𝑆 ) ∈ 𝐽 ) ) )
3 2 baibd ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋𝑆 ) ∈ 𝐽 ) )