| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
1
|
iscld3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |
| 3 |
|
eqss |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ∧ 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 4 |
1
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 5 |
4
|
biantrud |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ∧ 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 6 |
3 5
|
bitr4id |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |
| 7 |
2 6
|
bitrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |