Step |
Hyp |
Ref |
Expression |
1 |
|
fncld |
⊢ Clsd Fn Top |
2 |
|
fnfun |
⊢ ( Clsd Fn Top → Fun Clsd ) |
3 |
1 2
|
ax-mp |
⊢ Fun Clsd |
4 |
|
fvelima |
⊢ ( ( Fun Clsd ∧ 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) → ∃ 𝑎 ∈ ( TopOn ‘ 𝐵 ) ( Clsd ‘ 𝑎 ) = 𝐾 ) |
5 |
3 4
|
mpan |
⊢ ( 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) → ∃ 𝑎 ∈ ( TopOn ‘ 𝐵 ) ( Clsd ‘ 𝑎 ) = 𝐾 ) |
6 |
|
cldmreon |
⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ( Clsd ‘ 𝑎 ) ∈ ( Moore ‘ 𝐵 ) ) |
7 |
|
topontop |
⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → 𝑎 ∈ Top ) |
8 |
|
0cld |
⊢ ( 𝑎 ∈ Top → ∅ ∈ ( Clsd ‘ 𝑎 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ∅ ∈ ( Clsd ‘ 𝑎 ) ) |
10 |
|
uncld |
⊢ ( ( 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ) → ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) ∧ ( 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ) ) → ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) |
12 |
11
|
ralrimivva |
⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ∀ 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) |
13 |
6 9 12
|
3jca |
⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ( ( Clsd ‘ 𝑎 ) ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ ( Clsd ‘ 𝑎 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) ) |
14 |
|
eleq1 |
⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ( Clsd ‘ 𝑎 ) ∈ ( Moore ‘ 𝐵 ) ↔ 𝐾 ∈ ( Moore ‘ 𝐵 ) ) ) |
15 |
|
eleq2 |
⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ∅ ∈ ( Clsd ‘ 𝑎 ) ↔ ∅ ∈ 𝐾 ) ) |
16 |
|
eleq2 |
⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ↔ ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
17 |
16
|
raleqbi1dv |
⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ↔ ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
18 |
17
|
raleqbi1dv |
⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ∀ 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ↔ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
19 |
14 15 18
|
3anbi123d |
⊢ ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( ( ( Clsd ‘ 𝑎 ) ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ ( Clsd ‘ 𝑎 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝑎 ) ∀ 𝑦 ∈ ( Clsd ‘ 𝑎 ) ( 𝑥 ∪ 𝑦 ) ∈ ( Clsd ‘ 𝑎 ) ) ↔ ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) ) |
20 |
13 19
|
syl5ibcom |
⊢ ( 𝑎 ∈ ( TopOn ‘ 𝐵 ) → ( ( Clsd ‘ 𝑎 ) = 𝐾 → ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) ) |
21 |
20
|
rexlimiv |
⊢ ( ∃ 𝑎 ∈ ( TopOn ‘ 𝐵 ) ( Clsd ‘ 𝑎 ) = 𝐾 → ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
22 |
5 21
|
syl |
⊢ ( 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) → ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |
23 |
|
simp1 |
⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → 𝐾 ∈ ( Moore ‘ 𝐵 ) ) |
24 |
|
simp2 |
⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → ∅ ∈ 𝐾 ) |
25 |
|
uneq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 ∪ 𝑦 ) = ( 𝑏 ∪ 𝑦 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ↔ ( 𝑏 ∪ 𝑦 ) ∈ 𝐾 ) ) |
27 |
|
uneq2 |
⊢ ( 𝑦 = 𝑐 → ( 𝑏 ∪ 𝑦 ) = ( 𝑏 ∪ 𝑐 ) ) |
28 |
27
|
eleq1d |
⊢ ( 𝑦 = 𝑐 → ( ( 𝑏 ∪ 𝑦 ) ∈ 𝐾 ↔ ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) ) |
29 |
26 28
|
rspc2v |
⊢ ( ( 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾 ) → ( ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 → ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) ) |
30 |
29
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 → ( ( 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → ( ( 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) ) |
32 |
31
|
3impib |
⊢ ( ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝐾 ) |
33 |
|
eqid |
⊢ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } = { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } |
34 |
23 24 32 33
|
mretopd |
⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → ( { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐾 = ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ) ) |
35 |
34
|
simprd |
⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → 𝐾 = ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ) |
36 |
34
|
simpld |
⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ∈ ( TopOn ‘ 𝐵 ) ) |
37 |
7
|
ssriv |
⊢ ( TopOn ‘ 𝐵 ) ⊆ Top |
38 |
1
|
fndmi |
⊢ dom Clsd = Top |
39 |
37 38
|
sseqtrri |
⊢ ( TopOn ‘ 𝐵 ) ⊆ dom Clsd |
40 |
|
funfvima2 |
⊢ ( ( Fun Clsd ∧ ( TopOn ‘ 𝐵 ) ⊆ dom Clsd ) → ( { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ∈ ( TopOn ‘ 𝐵 ) → ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) ) |
41 |
3 39 40
|
mp2an |
⊢ ( { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ∈ ( TopOn ‘ 𝐵 ) → ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) |
42 |
36 41
|
syl |
⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → ( Clsd ‘ { 𝑎 ∈ 𝒫 𝐵 ∣ ( 𝐵 ∖ 𝑎 ) ∈ 𝐾 } ) ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) |
43 |
35 42
|
eqeltrd |
⊢ ( ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) → 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ) |
44 |
22 43
|
impbii |
⊢ ( 𝐾 ∈ ( Clsd “ ( TopOn ‘ 𝐵 ) ) ↔ ( 𝐾 ∈ ( Moore ‘ 𝐵 ) ∧ ∅ ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝑥 ∪ 𝑦 ) ∈ 𝐾 ) ) |