| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fncld | 
							⊢ Clsd  Fn  Top  | 
						
						
							| 2 | 
							
								
							 | 
							fnfun | 
							⊢ ( Clsd  Fn  Top  →  Fun  Clsd )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ Fun  Clsd  | 
						
						
							| 4 | 
							
								
							 | 
							fvelima | 
							⊢ ( ( Fun  Clsd  ∧  𝐾  ∈  ( Clsd  “  ( TopOn ‘ 𝐵 ) ) )  →  ∃ 𝑎  ∈  ( TopOn ‘ 𝐵 ) ( Clsd ‘ 𝑎 )  =  𝐾 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mpan | 
							⊢ ( 𝐾  ∈  ( Clsd  “  ( TopOn ‘ 𝐵 ) )  →  ∃ 𝑎  ∈  ( TopOn ‘ 𝐵 ) ( Clsd ‘ 𝑎 )  =  𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cldmreon | 
							⊢ ( 𝑎  ∈  ( TopOn ‘ 𝐵 )  →  ( Clsd ‘ 𝑎 )  ∈  ( Moore ‘ 𝐵 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							topontop | 
							⊢ ( 𝑎  ∈  ( TopOn ‘ 𝐵 )  →  𝑎  ∈  Top )  | 
						
						
							| 8 | 
							
								
							 | 
							0cld | 
							⊢ ( 𝑎  ∈  Top  →  ∅  ∈  ( Clsd ‘ 𝑎 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( 𝑎  ∈  ( TopOn ‘ 𝐵 )  →  ∅  ∈  ( Clsd ‘ 𝑎 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							uncld | 
							⊢ ( ( 𝑥  ∈  ( Clsd ‘ 𝑎 )  ∧  𝑦  ∈  ( Clsd ‘ 𝑎 ) )  →  ( 𝑥  ∪  𝑦 )  ∈  ( Clsd ‘ 𝑎 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							⊢ ( ( 𝑎  ∈  ( TopOn ‘ 𝐵 )  ∧  ( 𝑥  ∈  ( Clsd ‘ 𝑎 )  ∧  𝑦  ∈  ( Clsd ‘ 𝑎 ) ) )  →  ( 𝑥  ∪  𝑦 )  ∈  ( Clsd ‘ 𝑎 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ralrimivva | 
							⊢ ( 𝑎  ∈  ( TopOn ‘ 𝐵 )  →  ∀ 𝑥  ∈  ( Clsd ‘ 𝑎 ) ∀ 𝑦  ∈  ( Clsd ‘ 𝑎 ) ( 𝑥  ∪  𝑦 )  ∈  ( Clsd ‘ 𝑎 ) )  | 
						
						
							| 13 | 
							
								6 9 12
							 | 
							3jca | 
							⊢ ( 𝑎  ∈  ( TopOn ‘ 𝐵 )  →  ( ( Clsd ‘ 𝑎 )  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  ( Clsd ‘ 𝑎 )  ∧  ∀ 𝑥  ∈  ( Clsd ‘ 𝑎 ) ∀ 𝑦  ∈  ( Clsd ‘ 𝑎 ) ( 𝑥  ∪  𝑦 )  ∈  ( Clsd ‘ 𝑎 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eleq1 | 
							⊢ ( ( Clsd ‘ 𝑎 )  =  𝐾  →  ( ( Clsd ‘ 𝑎 )  ∈  ( Moore ‘ 𝐵 )  ↔  𝐾  ∈  ( Moore ‘ 𝐵 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eleq2 | 
							⊢ ( ( Clsd ‘ 𝑎 )  =  𝐾  →  ( ∅  ∈  ( Clsd ‘ 𝑎 )  ↔  ∅  ∈  𝐾 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eleq2 | 
							⊢ ( ( Clsd ‘ 𝑎 )  =  𝐾  →  ( ( 𝑥  ∪  𝑦 )  ∈  ( Clsd ‘ 𝑎 )  ↔  ( 𝑥  ∪  𝑦 )  ∈  𝐾 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							raleqbi1dv | 
							⊢ ( ( Clsd ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑦  ∈  ( Clsd ‘ 𝑎 ) ( 𝑥  ∪  𝑦 )  ∈  ( Clsd ‘ 𝑎 )  ↔  ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							raleqbi1dv | 
							⊢ ( ( Clsd ‘ 𝑎 )  =  𝐾  →  ( ∀ 𝑥  ∈  ( Clsd ‘ 𝑎 ) ∀ 𝑦  ∈  ( Clsd ‘ 𝑎 ) ( 𝑥  ∪  𝑦 )  ∈  ( Clsd ‘ 𝑎 )  ↔  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 ) )  | 
						
						
							| 19 | 
							
								14 15 18
							 | 
							3anbi123d | 
							⊢ ( ( Clsd ‘ 𝑎 )  =  𝐾  →  ( ( ( Clsd ‘ 𝑎 )  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  ( Clsd ‘ 𝑎 )  ∧  ∀ 𝑥  ∈  ( Clsd ‘ 𝑎 ) ∀ 𝑦  ∈  ( Clsd ‘ 𝑎 ) ( 𝑥  ∪  𝑦 )  ∈  ( Clsd ‘ 𝑎 ) )  ↔  ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 ) ) )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							syl5ibcom | 
							⊢ ( 𝑎  ∈  ( TopOn ‘ 𝐵 )  →  ( ( Clsd ‘ 𝑎 )  =  𝐾  →  ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							rexlimiv | 
							⊢ ( ∃ 𝑎  ∈  ( TopOn ‘ 𝐵 ) ( Clsd ‘ 𝑎 )  =  𝐾  →  ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 ) )  | 
						
						
							| 22 | 
							
								5 21
							 | 
							syl | 
							⊢ ( 𝐾  ∈  ( Clsd  “  ( TopOn ‘ 𝐵 ) )  →  ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 )  →  𝐾  ∈  ( Moore ‘ 𝐵 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 )  →  ∅  ∈  𝐾 )  | 
						
						
							| 25 | 
							
								
							 | 
							uneq1 | 
							⊢ ( 𝑥  =  𝑏  →  ( 𝑥  ∪  𝑦 )  =  ( 𝑏  ∪  𝑦 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							eleq1d | 
							⊢ ( 𝑥  =  𝑏  →  ( ( 𝑥  ∪  𝑦 )  ∈  𝐾  ↔  ( 𝑏  ∪  𝑦 )  ∈  𝐾 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							uneq2 | 
							⊢ ( 𝑦  =  𝑐  →  ( 𝑏  ∪  𝑦 )  =  ( 𝑏  ∪  𝑐 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							eleq1d | 
							⊢ ( 𝑦  =  𝑐  →  ( ( 𝑏  ∪  𝑦 )  ∈  𝐾  ↔  ( 𝑏  ∪  𝑐 )  ∈  𝐾 ) )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							rspc2v | 
							⊢ ( ( 𝑏  ∈  𝐾  ∧  𝑐  ∈  𝐾 )  →  ( ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾  →  ( 𝑏  ∪  𝑐 )  ∈  𝐾 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							com12 | 
							⊢ ( ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾  →  ( ( 𝑏  ∈  𝐾  ∧  𝑐  ∈  𝐾 )  →  ( 𝑏  ∪  𝑐 )  ∈  𝐾 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 )  →  ( ( 𝑏  ∈  𝐾  ∧  𝑐  ∈  𝐾 )  →  ( 𝑏  ∪  𝑐 )  ∈  𝐾 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							3impib | 
							⊢ ( ( ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 )  ∧  𝑏  ∈  𝐾  ∧  𝑐  ∈  𝐾 )  →  ( 𝑏  ∪  𝑐 )  ∈  𝐾 )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 }  =  { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 }  | 
						
						
							| 34 | 
							
								23 24 32 33
							 | 
							mretopd | 
							⊢ ( ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 )  →  ( { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 }  ∈  ( TopOn ‘ 𝐵 )  ∧  𝐾  =  ( Clsd ‘ { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 } ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							simprd | 
							⊢ ( ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 )  →  𝐾  =  ( Clsd ‘ { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 } ) )  | 
						
						
							| 36 | 
							
								34
							 | 
							simpld | 
							⊢ ( ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 )  →  { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 }  ∈  ( TopOn ‘ 𝐵 ) )  | 
						
						
							| 37 | 
							
								7
							 | 
							ssriv | 
							⊢ ( TopOn ‘ 𝐵 )  ⊆  Top  | 
						
						
							| 38 | 
							
								1
							 | 
							fndmi | 
							⊢ dom  Clsd  =  Top  | 
						
						
							| 39 | 
							
								37 38
							 | 
							sseqtrri | 
							⊢ ( TopOn ‘ 𝐵 )  ⊆  dom  Clsd  | 
						
						
							| 40 | 
							
								
							 | 
							funfvima2 | 
							⊢ ( ( Fun  Clsd  ∧  ( TopOn ‘ 𝐵 )  ⊆  dom  Clsd )  →  ( { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 }  ∈  ( TopOn ‘ 𝐵 )  →  ( Clsd ‘ { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 } )  ∈  ( Clsd  “  ( TopOn ‘ 𝐵 ) ) ) )  | 
						
						
							| 41 | 
							
								3 39 40
							 | 
							mp2an | 
							⊢ ( { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 }  ∈  ( TopOn ‘ 𝐵 )  →  ( Clsd ‘ { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 } )  ∈  ( Clsd  “  ( TopOn ‘ 𝐵 ) ) )  | 
						
						
							| 42 | 
							
								36 41
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 )  →  ( Clsd ‘ { 𝑎  ∈  𝒫  𝐵  ∣  ( 𝐵  ∖  𝑎 )  ∈  𝐾 } )  ∈  ( Clsd  “  ( TopOn ‘ 𝐵 ) ) )  | 
						
						
							| 43 | 
							
								35 42
							 | 
							eqeltrd | 
							⊢ ( ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 )  →  𝐾  ∈  ( Clsd  “  ( TopOn ‘ 𝐵 ) ) )  | 
						
						
							| 44 | 
							
								22 43
							 | 
							impbii | 
							⊢ ( 𝐾  ∈  ( Clsd  “  ( TopOn ‘ 𝐵 ) )  ↔  ( 𝐾  ∈  ( Moore ‘ 𝐵 )  ∧  ∅  ∈  𝐾  ∧  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝑥  ∪  𝑦 )  ∈  𝐾 ) )  |