Step |
Hyp |
Ref |
Expression |
1 |
|
isclm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
isclm.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) |
4 |
|
fvexd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) ∈ V ) |
5 |
|
id |
⊢ ( 𝑓 = ( Scalar ‘ 𝑤 ) → 𝑓 = ( Scalar ‘ 𝑤 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
8 |
5 7
|
sylan9eqr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → 𝑓 = 𝐹 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑓 = 𝐹 ) |
10 |
|
id |
⊢ ( 𝑘 = ( Base ‘ 𝑓 ) → 𝑘 = ( Base ‘ 𝑓 ) ) |
11 |
8
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
12 |
11 2
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
13 |
10 12
|
sylan9eqr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑘 = 𝐾 ) |
14 |
13
|
oveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ℂfld ↾s 𝑘 ) = ( ℂfld ↾s 𝐾 ) ) |
15 |
9 14
|
eqeq12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑓 = ( ℂfld ↾s 𝑘 ) ↔ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
16 |
13
|
eleq1d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑘 ∈ ( SubRing ‘ ℂfld ) ↔ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
17 |
15 16
|
anbi12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ 𝑘 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
18 |
4 17
|
sbcied |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ 𝑘 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
19 |
3 18
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ 𝑘 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
20 |
|
df-clm |
⊢ ℂMod = { 𝑤 ∈ LMod ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ 𝑘 ∈ ( SubRing ‘ ℂfld ) ) } |
21 |
19 20
|
elrab2 |
⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
22 |
|
3anass |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝑊 ∈ LMod ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
23 |
21 22
|
bitr4i |
⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |