| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isclo.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | isclo | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ∈  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) ) ) | 
						
							| 3 |  | eleq1w | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) | 
						
							| 4 | 3 | bibi2d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ↔  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) ) | 
						
							| 5 | 4 | cbvralvw | ⊢ ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ↔  ∀ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) | 
						
							| 6 | 5 | anbi2i | ⊢ ( ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) )  ↔  ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ∀ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) ) | 
						
							| 7 |  | pm4.24 | ⊢ ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ↔  ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) ) | 
						
							| 8 |  | raaanv | ⊢ ( ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) )  ↔  ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ∀ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) ) | 
						
							| 9 | 6 7 8 | 3bitr4i | ⊢ ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ↔  ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) ) | 
						
							| 10 |  | bibi1 | ⊢ ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 )  ↔  ( 𝑧  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) ) | 
						
							| 11 | 10 | biimpa | ⊢ ( ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) )  →  ( 𝑧  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) | 
						
							| 12 | 11 | biimpcd | ⊢ ( 𝑧  ∈  𝐴  →  ( ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) )  →  𝑤  ∈  𝐴 ) ) | 
						
							| 13 | 12 | ralimdv | ⊢ ( 𝑧  ∈  𝐴  →  ( ∀ 𝑤  ∈  𝑦 ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) )  →  ∀ 𝑤  ∈  𝑦 𝑤  ∈  𝐴 ) ) | 
						
							| 14 | 13 | com12 | ⊢ ( ∀ 𝑤  ∈  𝑦 ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) )  →  ( 𝑧  ∈  𝐴  →  ∀ 𝑤  ∈  𝑦 𝑤  ∈  𝐴 ) ) | 
						
							| 15 |  | dfss3 | ⊢ ( 𝑦  ⊆  𝐴  ↔  ∀ 𝑤  ∈  𝑦 𝑤  ∈  𝐴 ) | 
						
							| 16 | 14 15 | imbitrrdi | ⊢ ( ∀ 𝑤  ∈  𝑦 ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) )  →  ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) | 
						
							| 17 | 16 | ralimi | ⊢ ( ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ∧  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) )  →  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) | 
						
							| 18 | 9 17 | sylbi | ⊢ ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  →  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) | 
						
							| 19 |  | eleq1w | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ∈  𝐴  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 20 | 19 | imbi1d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 )  ↔  ( 𝑥  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) ) | 
						
							| 21 | 20 | rspcv | ⊢ ( 𝑥  ∈  𝑦  →  ( ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 )  →  ( 𝑥  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) ) | 
						
							| 22 |  | dfss3 | ⊢ ( 𝑦  ⊆  𝐴  ↔  ∀ 𝑧  ∈  𝑦 𝑧  ∈  𝐴 ) | 
						
							| 23 | 22 | imbi2i | ⊢ ( ( 𝑥  ∈  𝐴  →  𝑦  ⊆  𝐴 )  ↔  ( 𝑥  ∈  𝐴  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  𝐴 ) ) | 
						
							| 24 |  | r19.21v | ⊢ ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  →  𝑧  ∈  𝐴 )  ↔  ( 𝑥  ∈  𝐴  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  𝐴 ) ) | 
						
							| 25 | 23 24 | bitr4i | ⊢ ( ( 𝑥  ∈  𝐴  →  𝑦  ⊆  𝐴 )  ↔  ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) | 
						
							| 26 | 21 25 | imbitrdi | ⊢ ( 𝑥  ∈  𝑦  →  ( ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 )  →  ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) ) | 
						
							| 27 |  | ssel | ⊢ ( 𝑦  ⊆  𝐴  →  ( 𝑥  ∈  𝑦  →  𝑥  ∈  𝐴 ) ) | 
						
							| 28 | 27 | com12 | ⊢ ( 𝑥  ∈  𝑦  →  ( 𝑦  ⊆  𝐴  →  𝑥  ∈  𝐴 ) ) | 
						
							| 29 | 28 | imim2d | ⊢ ( 𝑥  ∈  𝑦  →  ( ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 )  →  ( 𝑧  ∈  𝐴  →  𝑥  ∈  𝐴 ) ) ) | 
						
							| 30 | 29 | ralimdv | ⊢ ( 𝑥  ∈  𝑦  →  ( ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 )  →  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑥  ∈  𝐴 ) ) ) | 
						
							| 31 | 26 30 | jcad | ⊢ ( 𝑥  ∈  𝑦  →  ( ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 )  →  ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  →  𝑧  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑥  ∈  𝐴 ) ) ) ) | 
						
							| 32 |  | ralbiim | ⊢ ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ↔  ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  →  𝑧  ∈  𝐴 )  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑥  ∈  𝐴 ) ) ) | 
						
							| 33 | 31 32 | imbitrrdi | ⊢ ( 𝑥  ∈  𝑦  →  ( ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 )  →  ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) ) | 
						
							| 34 | 18 33 | impbid2 | ⊢ ( 𝑥  ∈  𝑦  →  ( ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 )  ↔  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) ) | 
						
							| 35 | 34 | pm5.32i | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) ) | 
						
							| 36 | 35 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) )  ↔  ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) ) | 
						
							| 37 | 36 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) )  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) ) | 
						
							| 38 | 2 37 | bitrdi | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ∈  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝑧  ∈  𝐴  →  𝑦  ⊆  𝐴 ) ) ) ) |