| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlks | ⊢ ( ClWalks ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( 𝑝 ‘ 0 )  =  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) } | 
						
							| 2 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 0 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑝 ‘ 0 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  𝑝  =  𝑃 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( ♯ ‘ 𝑓 )  =  ( ♯ ‘ 𝐹 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ♯ ‘ 𝑓 )  =  ( ♯ ‘ 𝐹 ) ) | 
						
							| 7 | 4 6 | fveq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 8 | 3 7 | eqeq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ( 𝑝 ‘ 0 )  =  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  ↔  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 9 |  | relwlk | ⊢ Rel  ( Walks ‘ 𝐺 ) | 
						
							| 10 | 1 8 9 | brfvopabrbr | ⊢ ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |