| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isclwlke.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | isclwlke.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | isclwlk | ⊢ ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 4 | 1 2 | upgriswlk | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ↔  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) ) | 
						
							| 5 | 4 | anbi1d | ⊢ ( 𝐺  ∈  UPGraph  →  ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  ↔  ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 6 |  | 3an4anass | ⊢ ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  ↔  ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 7 | 5 6 | bitrdi | ⊢ ( 𝐺  ∈  UPGraph  →  ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  ↔  ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) | 
						
							| 8 | 3 7 | bitrid | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃  ↔  ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  ∧  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |