| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | clwwlk.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | neeq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤  ≠  ∅  ↔  𝑊  ≠  ∅ ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑤  =  𝑊  →  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 𝑖 )  =  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ ( 𝑖  +  1 ) )  =  ( 𝑊 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 9 | 7 8 | preq12d | ⊢ ( 𝑤  =  𝑊  →  { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  =  { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑤  =  𝑊  →  ( { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ↔  { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 11 | 6 10 | raleqbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑊 ) ) | 
						
							| 13 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 14 | 12 13 | preq12d | ⊢ ( 𝑤  =  𝑊  →  { ( lastS ‘ 𝑤 ) ,  ( 𝑤 ‘ 0 ) }  =  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) } ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑤  =  𝑊  →  ( { ( lastS ‘ 𝑤 ) ,  ( 𝑤 ‘ 0 ) }  ∈  𝐸  ↔  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) | 
						
							| 16 | 3 11 15 | 3anbi123d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑤 ) ,  ( 𝑤 ‘ 0 ) }  ∈  𝐸 )  ↔  ( 𝑊  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) | 
						
							| 17 | 16 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑤 ) ,  ( 𝑤 ‘ 0 ) }  ∈  𝐸 ) }  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) | 
						
							| 18 | 1 2 | clwwlk | ⊢ ( ClWWalks ‘ 𝐺 )  =  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑤 ) ,  ( 𝑤 ‘ 0 ) }  ∈  𝐸 ) } | 
						
							| 19 | 18 | eleq2i | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  𝑊  ∈  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑤 ) ,  ( 𝑤 ‘ 0 ) }  ∈  𝐸 ) } ) | 
						
							| 20 |  | 3anass | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  ↔  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) | 
						
							| 21 |  | anass | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  ≠  ∅  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) ) | 
						
							| 22 |  | 3anass | ⊢ ( ( 𝑊  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  ↔  ( 𝑊  ≠  ∅  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) | 
						
							| 23 | 22 | bicomi | ⊢ ( ( 𝑊  ≠  ∅  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ↔  ( 𝑊  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) | 
						
							| 24 | 23 | anbi2i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  ≠  ∅  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) | 
						
							| 25 | 20 21 24 | 3bitri | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑊  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) | 
						
							| 26 | 17 19 25 | 3bitr4i | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) |