Description: A word over the set of vertices representing a closed walk on vertex X of length N in a graph G . (Contributed by AV, 25-Feb-2022) (Revised by AV, 24-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | isclwwlknon | ⊢ ( 𝑊 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) | |
2 | 1 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 0 ) = 𝑋 ↔ ( 𝑊 ‘ 0 ) = 𝑋 ) ) |
3 | clwwlknon | ⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } | |
4 | 2 3 | elrab2 | ⊢ ( 𝑊 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) |