Step |
Hyp |
Ref |
Expression |
1 |
|
isclwwlknx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isclwwlknx.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
eleq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑁 ∈ ℕ ) ) |
4 |
|
len0nnbi |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
5 |
4
|
biimprcd |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) |
6 |
3 5
|
syl6bir |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) ) |
7 |
6
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) |
8 |
7
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ 𝑊 ∈ Word 𝑉 ) → 𝑊 ≠ ∅ ) |
9 |
8
|
biantrurd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ 𝑊 ∈ Word 𝑉 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
10 |
9
|
bicomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ 𝑊 ∈ Word 𝑉 ) → ( ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
11 |
10
|
pm5.32da |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
12 |
11
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) ) |
13 |
12
|
pm5.32rd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
14 |
|
isclwwlkn |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
15 |
1 2
|
isclwwlk |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) |
16 |
|
3anass |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
17 |
|
anass |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
18 |
16 17
|
bitri |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
19 |
15 18
|
bitri |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
20 |
19
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
21 |
14 20
|
bitri |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
22 |
|
3anass |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
23 |
22
|
anbi1i |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
24 |
13 21 23
|
3bitr4g |
⊢ ( 𝑁 ∈ ℕ → ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |