Step |
Hyp |
Ref |
Expression |
1 |
|
iscmet2.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
3 |
1
|
cmetcau |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
4 |
3
|
ex |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
5 |
4
|
ssrdv |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
6 |
2 5
|
jca |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
7 |
|
ssel2 |
⊢ ( ( ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
8 |
7
|
a1d |
⊢ ( ( ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) → ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
9 |
8
|
ralrimiva |
⊢ ( ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) → ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
11 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
12 |
|
1zzd |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → 1 ∈ ℤ ) |
13 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
14 |
11 1 12 13
|
iscmet3 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) |
15 |
10 14
|
mpbird |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
16 |
6 15
|
impbii |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |