Step |
Hyp |
Ref |
Expression |
1 |
|
iscmet3i.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
iscmet3i.3 |
⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) |
3 |
|
iscmet3i.4 |
⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝑋 ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
5 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
6 |
2
|
a1i |
⊢ ( ⊤ → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
7 |
4 1 5 6
|
iscmet3 |
⊢ ( ⊤ → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) |
8 |
7
|
mptru |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
9 |
3
|
ex |
⊢ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
10 |
8 9
|
mprgbir |
⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) |