Step |
Hyp |
Ref |
Expression |
1 |
|
iscmet3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iscmet3.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
3 |
|
iscmet3.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
iscmet3.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
5 |
|
iscmet3.6 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) |
6 |
|
iscmet3.9 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
7 |
|
iscmet3.10 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
8 |
1
|
iscmet3lem3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) |
9 |
3 8
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) |
10 |
1
|
r19.2uz |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ∃ 𝑘 ∈ 𝑍 ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) |
11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑘 ∈ 𝑍 ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) |
12 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑘 ) ) |
13 |
12
|
eleq2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) ) |
14 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
15 |
|
simpl |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ 𝑍 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ 𝑍 ) |
17 |
|
rsp |
⊢ ( ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) → ( 𝑘 ∈ 𝑍 → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) ) |
18 |
14 16 17
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
19 |
16 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
20 |
|
eluzfz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) ) |
22 |
13 18 21
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
23 |
12
|
eleq2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑘 ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑗 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑛 ) ) ) |
27 |
24 26
|
raleqbidv |
⊢ ( 𝑘 = 𝑗 → ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑛 ) ) ) |
28 |
1
|
uztrn2 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ 𝑍 ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑗 ∈ 𝑍 ) |
30 |
27 14 29
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
31 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
32 |
|
elfzuzb |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
33 |
19 31 32
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) |
34 |
23 30 33
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
35 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
36 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
37 |
36 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
38 |
37
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ℤ ) |
39 |
|
rsp |
⊢ ( ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) → ( 𝑘 ∈ ℤ → ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
40 |
35 38 39
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
41 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑘 ) → ( 𝑢 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) ) |
42 |
41
|
breq1d |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑘 ) → ( ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
43 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑗 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
44 |
43
|
breq1d |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑗 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
45 |
42 44
|
rspc2va |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑘 ) ) ∧ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
46 |
22 34 40 45
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
47 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
48 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ 𝑋 ) |
49 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
50 |
48 15 49
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
51 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
52 |
48 28 51
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
53 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
54 |
47 50 52 53
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
55 |
|
1rp |
⊢ 1 ∈ ℝ+ |
56 |
|
rphalfcl |
⊢ ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) |
57 |
55 56
|
ax-mp |
⊢ ( 1 / 2 ) ∈ ℝ+ |
58 |
|
rpexpcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
59 |
57 38 58
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
60 |
59
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
61 |
|
rpre |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) |
62 |
61
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℝ ) |
63 |
|
lttr |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ∧ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ∧ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
64 |
54 60 62 63
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ∧ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
65 |
46 64
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
66 |
65
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
67 |
66
|
ralrimdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
68 |
67
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ 𝑍 ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
69 |
11 68
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) |
70 |
69
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) |
71 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
72 |
4 71
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
73 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
74 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
75 |
1 72 3 73 74 5
|
iscauf |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
76 |
70 75
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |