| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet3.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | iscmet3.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 3 |  | iscmet3.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | iscmet3.4 | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 5 |  | iscmet3.6 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ 𝑋 ) | 
						
							| 6 |  | iscmet3.9 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℤ ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 7 |  | iscmet3.10 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 ∀ 𝑛  ∈  ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 8 | 1 | iscmet3lem3 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟 ) | 
						
							| 9 | 3 8 | sylan | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟 ) | 
						
							| 10 | 1 | r19.2uz | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟  →  ∃ 𝑘  ∈  𝑍 ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑘  ∈  𝑍 ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟 ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑘 ) ) ) | 
						
							| 14 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  𝑍 ∀ 𝑛  ∈  ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 17 |  | rsp | ⊢ ( ∀ 𝑘  ∈  𝑍 ∀ 𝑛  ∈  ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 )  →  ( 𝑘  ∈  𝑍  →  ∀ 𝑛  ∈  ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 ) ) ) | 
						
							| 18 | 14 16 17 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ∀ 𝑛  ∈  ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 19 | 16 1 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 20 |  | eluzfz2 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ( 𝑀 ... 𝑘 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  𝑘  ∈  ( 𝑀 ... 𝑘 ) ) | 
						
							| 22 | 13 18 21 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 23 | 12 | eleq2d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐹 ‘ 𝑗 )  ∈  ( 𝑆 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑗 )  ∈  ( 𝑆 ‘ 𝑘 ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑀 ... 𝑘 )  =  ( 𝑀 ... 𝑗 ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑗 )  ∈  ( 𝑆 ‘ 𝑛 ) ) ) | 
						
							| 27 | 24 26 | raleqbidv | ⊢ ( 𝑘  =  𝑗  →  ( ∀ 𝑛  ∈  ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑗 )  ∈  ( 𝑆 ‘ 𝑛 ) ) ) | 
						
							| 28 | 1 | uztrn2 | ⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 30 | 27 14 29 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ∀ 𝑛  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑗 )  ∈  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 31 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 32 |  | elfzuzb | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↔  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) ) | 
						
							| 33 | 19 31 32 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  𝑘  ∈  ( 𝑀 ... 𝑗 ) ) | 
						
							| 34 | 23 30 33 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 35 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ℤ ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 36 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ℤ ) | 
						
							| 37 | 36 1 | eleq2s | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ ) | 
						
							| 38 | 37 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 39 |  | rsp | ⊢ ( ∀ 𝑘  ∈  ℤ ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 )  →  ( 𝑘  ∈  ℤ  →  ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 40 | 35 38 39 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑢  =  ( 𝐹 ‘ 𝑘 )  →  ( 𝑢 𝐷 𝑣 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) ) | 
						
							| 42 | 41 | breq1d | ⊢ ( 𝑢  =  ( 𝐹 ‘ 𝑘 )  →  ( ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 )  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 43 |  | oveq2 | ⊢ ( 𝑣  =  ( 𝐹 ‘ 𝑗 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 44 | 43 | breq1d | ⊢ ( 𝑣  =  ( 𝐹 ‘ 𝑗 )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 )  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 45 | 42 44 | rspc2va | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑘 )  ∧  ( 𝐹 ‘ 𝑗 )  ∈  ( 𝑆 ‘ 𝑘 ) )  ∧  ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 46 | 22 34 40 45 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 47 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 48 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  𝐹 : 𝑍 ⟶ 𝑋 ) | 
						
							| 49 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 50 | 48 15 49 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 51 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 ) | 
						
							| 52 | 48 28 51 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 ) | 
						
							| 53 |  | metcl | ⊢ ( ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑗 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 54 | 47 50 52 53 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 55 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 56 |  | rphalfcl | ⊢ ( 1  ∈  ℝ+  →  ( 1  /  2 )  ∈  ℝ+ ) | 
						
							| 57 | 55 56 | ax-mp | ⊢ ( 1  /  2 )  ∈  ℝ+ | 
						
							| 58 |  | rpexpcl | ⊢ ( ( ( 1  /  2 )  ∈  ℝ+  ∧  𝑘  ∈  ℤ )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 59 | 57 38 58 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 60 | 59 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 61 |  | rpre | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℝ ) | 
						
							| 62 | 61 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  𝑟  ∈  ℝ ) | 
						
							| 63 |  | lttr | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  ∈  ℝ  ∧  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ  ∧  𝑟  ∈  ℝ )  →  ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  ( ( 1  /  2 ) ↑ 𝑘 )  ∧  ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  𝑟 ) ) | 
						
							| 64 | 54 60 62 63 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  ( ( 1  /  2 ) ↑ 𝑘 )  ∧  ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  𝑟 ) ) | 
						
							| 65 | 46 64 | mpand | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) )  →  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  𝑟 ) ) | 
						
							| 66 | 65 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  𝑟 ) ) | 
						
							| 67 | 66 | ralrimdva | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  𝑟 ) ) | 
						
							| 68 | 67 | reximdva | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ∃ 𝑘  ∈  𝑍 ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑟  →  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  𝑟 ) ) | 
						
							| 69 | 11 68 | mpd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  𝑟 ) | 
						
							| 70 | 69 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑟  ∈  ℝ+ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  𝑟 ) | 
						
							| 71 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 72 | 4 71 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 73 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 74 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 75 | 1 72 3 73 74 5 | iscauf | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( Cau ‘ 𝐷 )  ↔  ∀ 𝑟  ∈  ℝ+ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) )  <  𝑟 ) ) | 
						
							| 76 | 70 75 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( Cau ‘ 𝐷 ) ) |