| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet3.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | iscmet3.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 3 |  | iscmet3.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | iscmet3.4 | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 5 |  | iscmet3.6 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ 𝑋 ) | 
						
							| 6 |  | iscmet3.9 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℤ ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 7 |  | iscmet3.10 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 ∀ 𝑛  ∈  ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 8 |  | iscmet3.7 | ⊢ ( 𝜑  →  𝐺  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 9 |  | iscmet3.8 | ⊢ ( 𝜑  →  𝑆 : ℤ ⟶ 𝐺 ) | 
						
							| 10 |  | iscmet3.5 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ( ⇝𝑡 ‘ 𝐽 ) ) | 
						
							| 11 |  | eldmg | ⊢ ( 𝐹  ∈  dom  ( ⇝𝑡 ‘ 𝐽 )  →  ( 𝐹  ∈  dom  ( ⇝𝑡 ‘ 𝐽 )  ↔  ∃ 𝑥 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) | 
						
							| 12 | 11 | ibi | ⊢ ( 𝐹  ∈  dom  ( ⇝𝑡 ‘ 𝐽 )  →  ∃ 𝑥 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝜑  →  ∃ 𝑥 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | 
						
							| 14 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 16 | 2 | mopntopon | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 18 |  | lmcl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑋 ) | 
						
							| 19 | 17 18 | sylan | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑋 ) | 
						
							| 20 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 21 | 2 | mopni2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑦  ∈  𝐽  ∧  𝑥  ∈  𝑦 )  →  ∃ 𝑟  ∈  ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) | 
						
							| 22 | 21 | 3expia | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑦  ∈  𝐽 )  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑟  ∈  ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) ) | 
						
							| 23 | 20 22 | sylan | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑦  ∈  𝐽 )  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑟  ∈  ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) ) | 
						
							| 24 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑦  ∈  𝐽 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) )  →  𝐺  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 25 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  𝑀  ∈  ℤ ) | 
						
							| 26 |  | rphalfcl | ⊢ ( 𝑟  ∈  ℝ+  →  ( 𝑟  /  2 )  ∈  ℝ+ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑟  /  2 )  ∈  ℝ+ ) | 
						
							| 28 | 1 | iscmet3lem3 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑟  /  2 )  ∈  ℝ+ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 ) ) | 
						
							| 29 | 25 27 28 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 ) ) | 
						
							| 30 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 31 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  𝑥  ∈  𝑋 ) | 
						
							| 32 |  | blcntr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  ( 𝑟  /  2 )  ∈  ℝ+ )  →  𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) | 
						
							| 33 | 30 31 27 32 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) | 
						
							| 34 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | 
						
							| 35 | 27 | rpxrd | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑟  /  2 )  ∈  ℝ* ) | 
						
							| 36 | 2 | blopn | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  ( 𝑟  /  2 )  ∈  ℝ* )  →  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ∈  𝐽 ) | 
						
							| 37 | 30 31 35 36 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ∈  𝐽 ) | 
						
							| 38 | 1 33 25 34 37 | lmcvg | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) | 
						
							| 39 | 1 | rexanuz2 | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) )  ↔  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) | 
						
							| 40 | 1 | r19.2uz | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) )  →  ∃ 𝑘  ∈  𝑍 ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) | 
						
							| 41 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) )  →  𝐺  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 42 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) )  →  𝑆 : ℤ ⟶ 𝐺 ) | 
						
							| 43 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ℤ ) | 
						
							| 44 | 43 1 | eleq2s | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ ) | 
						
							| 45 | 44 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 46 |  | ffvelcdm | ⊢ ( ( 𝑆 : ℤ ⟶ 𝐺  ∧  𝑘  ∈  ℤ )  →  ( 𝑆 ‘ 𝑘 )  ∈  𝐺 ) | 
						
							| 47 | 42 45 46 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) )  →  ( 𝑆 ‘ 𝑘 )  ∈  𝐺 ) | 
						
							| 48 |  | rpxr | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℝ* ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  𝑟  ∈  ℝ* ) | 
						
							| 50 |  | blssm | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑟  ∈  ℝ* )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑋 ) | 
						
							| 51 | 30 31 49 50 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑋 ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑋 ) | 
						
							| 53 | 44 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  ℤ ) | 
						
							| 54 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 55 |  | rphalfcl | ⊢ ( 1  ∈  ℝ+  →  ( 1  /  2 )  ∈  ℝ+ ) | 
						
							| 56 | 54 55 | ax-mp | ⊢ ( 1  /  2 )  ∈  ℝ+ | 
						
							| 57 |  | rpexpcl | ⊢ ( ( ( 1  /  2 )  ∈  ℝ+  ∧  𝑘  ∈  ℤ )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 58 | 56 57 | mpan | ⊢ ( 𝑘  ∈  ℤ  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 59 | 53 58 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 60 | 59 | rpred | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 61 | 27 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( 𝑟  /  2 )  ∈  ℝ+ ) | 
						
							| 62 | 61 | rpred | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( 𝑟  /  2 )  ∈  ℝ ) | 
						
							| 63 |  | ltle | ⊢ ( ( ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ  ∧  ( 𝑟  /  2 )  ∈  ℝ )  →  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ≤  ( 𝑟  /  2 ) ) ) | 
						
							| 64 | 60 62 63 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ≤  ( 𝑟  /  2 ) ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 66 | 65 | eleq2d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 )  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑘 ) ) ) | 
						
							| 67 | 7 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ∀ 𝑛  ∈  ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 68 |  | eluzfz2 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ( 𝑀 ... 𝑘 ) ) | 
						
							| 69 | 68 1 | eleq2s | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ( 𝑀 ... 𝑘 ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  ( 𝑀 ... 𝑘 ) ) | 
						
							| 71 | 66 67 70 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 73 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 74 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  ∀ 𝑘  ∈  ℤ ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 75 | 44 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 76 |  | rsp | ⊢ ( ∀ 𝑘  ∈  ℤ ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 )  →  ( 𝑘  ∈  ℤ  →  ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 77 | 74 75 76 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 78 |  | oveq1 | ⊢ ( 𝑢  =  ( 𝐹 ‘ 𝑘 )  →  ( 𝑢 𝐷 𝑣 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) ) | 
						
							| 79 | 78 | breq1d | ⊢ ( 𝑢  =  ( 𝐹 ‘ 𝑘 )  →  ( ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 )  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 80 |  | oveq2 | ⊢ ( 𝑣  =  𝑦  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) | 
						
							| 81 | 80 | breq1d | ⊢ ( 𝑣  =  𝑦  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 )  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 82 | 79 81 | rspc2va | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑆 ‘ 𝑘 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  ∧  ∀ 𝑢  ∈  ( 𝑆 ‘ 𝑘 ) ∀ 𝑣  ∈  ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 83 | 72 73 77 82 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 84 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 85 | 44 58 | syl | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 86 | 85 | rpxrd | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ* ) | 
						
							| 87 | 86 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ* ) | 
						
							| 88 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 90 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐺  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 91 | 9 44 46 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝑆 ‘ 𝑘 )  ∈  𝐺 ) | 
						
							| 92 |  | filelss | ⊢ ( ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑆 ‘ 𝑘 )  ∈  𝐺 )  →  ( 𝑆 ‘ 𝑘 )  ⊆  𝑋 ) | 
						
							| 93 | 90 91 92 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝑆 ‘ 𝑘 )  ⊆  𝑋 ) | 
						
							| 94 | 93 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 95 |  | elbl2 | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ* )  ∧  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑦  ∈  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) )  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 96 | 84 87 89 94 95 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  ( 𝑦  ∈  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) )  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 )  <  ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 97 | 83 96 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑦  ∈  ( 𝑆 ‘ 𝑘 ) )  →  𝑦  ∈  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 98 | 97 | ex | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝑦  ∈  ( 𝑆 ‘ 𝑘 )  →  𝑦  ∈  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) ) ) ) | 
						
							| 99 | 98 | ssrdv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝑆 ‘ 𝑘 )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 100 | 99 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( 𝑆 ‘ 𝑘 )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 101 | 30 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 102 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  𝐹 : 𝑍 ⟶ 𝑋 ) | 
						
							| 103 | 102 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 104 | 59 | rpxrd | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ* ) | 
						
							| 105 | 35 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( 𝑟  /  2 )  ∈  ℝ* ) | 
						
							| 106 |  | ssbl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ*  ∧  ( 𝑟  /  2 )  ∈  ℝ* )  ∧  ( ( 1  /  2 ) ↑ 𝑘 )  ≤  ( 𝑟  /  2 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) | 
						
							| 107 | 106 | 3expia | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ*  ∧  ( 𝑟  /  2 )  ∈  ℝ* ) )  →  ( ( ( 1  /  2 ) ↑ 𝑘 )  ≤  ( 𝑟  /  2 )  →  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) | 
						
							| 108 | 101 103 104 105 107 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 1  /  2 ) ↑ 𝑘 )  ≤  ( 𝑟  /  2 )  →  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) | 
						
							| 109 |  | sstr | ⊢ ( ( ( 𝑆 ‘ 𝑘 )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) )  ∧  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1  /  2 ) ↑ 𝑘 ) )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) )  →  ( 𝑆 ‘ 𝑘 )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) | 
						
							| 110 | 100 108 109 | syl6an | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 1  /  2 ) ↑ 𝑘 )  ≤  ( 𝑟  /  2 )  →  ( 𝑆 ‘ 𝑘 )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) | 
						
							| 111 | 64 110 | syld | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  →  ( 𝑆 ‘ 𝑘 )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) | 
						
							| 112 | 111 | adantrd | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) )  →  ( 𝑆 ‘ 𝑘 )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) | 
						
							| 113 | 112 | impr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) )  →  ( 𝑆 ‘ 𝑘 )  ⊆  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) | 
						
							| 114 | 31 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  𝑥  ∈  𝑋 ) | 
						
							| 115 |  | blcom | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑟  /  2 )  ∈  ℝ* )  ∧  ( 𝑥  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ↔  𝑥  ∈  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) | 
						
							| 116 | 101 105 114 103 115 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ↔  𝑥  ∈  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) | 
						
							| 117 |  | rpre | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℝ ) | 
						
							| 118 | 117 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  𝑟  ∈  ℝ ) | 
						
							| 119 |  | blhalf | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  ∧  ( 𝑟  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) | 
						
							| 120 | 119 | expr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  ∧  𝑟  ∈  ℝ )  →  ( 𝑥  ∈  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | 
						
							| 121 | 101 103 118 120 | syl21anc | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( 𝑥  ∈  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | 
						
							| 122 | 116 121 | sylbid | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | 
						
							| 123 | 122 | adantld | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | 
						
							| 124 | 123 | impr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) )  →  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) | 
						
							| 125 | 113 124 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) )  →  ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) | 
						
							| 126 |  | filss | ⊢ ( ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  ( ( 𝑆 ‘ 𝑘 )  ∈  𝐺  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑋  ∧  ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ∈  𝐺 ) | 
						
							| 127 | 41 47 52 125 126 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  ∧  ( 𝑘  ∈  𝑍  ∧  ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) ) ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ∈  𝐺 ) | 
						
							| 128 | 127 | rexlimdvaa | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ( ∃ 𝑘  ∈  𝑍 ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ∈  𝐺 ) ) | 
						
							| 129 | 40 128 | syl5 | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ∈  𝐺 ) ) | 
						
							| 130 | 39 129 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ( ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  ( 𝑟  /  2 )  ∧  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟  /  2 ) ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ∈  𝐺 ) ) | 
						
							| 131 | 29 38 130 | mp2and | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ∈  𝐺 ) | 
						
							| 132 | 131 | ad2ant2r | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑦  ∈  𝐽 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ∈  𝐺 ) | 
						
							| 133 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 134 |  | toponss | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑦  ∈  𝐽 )  →  𝑦  ⊆  𝑋 ) | 
						
							| 135 | 133 134 | sylan | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑦  ∈  𝐽 )  →  𝑦  ⊆  𝑋 ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑦  ∈  𝐽 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) )  →  𝑦  ⊆  𝑋 ) | 
						
							| 137 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑦  ∈  𝐽 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) | 
						
							| 138 |  | filss | ⊢ ( ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ∈  𝐺  ∧  𝑦  ⊆  𝑋  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) )  →  𝑦  ∈  𝐺 ) | 
						
							| 139 | 24 132 136 137 138 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑦  ∈  𝐽 )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦 ) )  →  𝑦  ∈  𝐺 ) | 
						
							| 140 | 139 | rexlimdvaa | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑦  ∈  𝐽 )  →  ( ∃ 𝑟  ∈  ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑦  →  𝑦  ∈  𝐺 ) ) | 
						
							| 141 | 23 140 | syld | ⊢ ( ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  ∧  𝑦  ∈  𝐽 )  →  ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐺 ) ) | 
						
							| 142 | 141 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐺 ) ) | 
						
							| 143 |  | flimopn | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑥  ∈  ( 𝐽  fLim  𝐺 )  ↔  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐺 ) ) ) ) | 
						
							| 144 | 17 8 143 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐽  fLim  𝐺 )  ↔  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐺 ) ) ) ) | 
						
							| 145 | 144 | adantr | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝑥  ∈  ( 𝐽  fLim  𝐺 )  ↔  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  →  𝑦  ∈  𝐺 ) ) ) ) | 
						
							| 146 | 19 142 145 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  ( 𝐽  fLim  𝐺 ) ) | 
						
							| 147 | 146 | ne0d | ⊢ ( ( 𝜑  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐽  fLim  𝐺 )  ≠  ∅ ) | 
						
							| 148 | 13 147 | exlimddv | ⊢ ( 𝜑  →  ( 𝐽  fLim  𝐺 )  ≠  ∅ ) |