| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscmet3.1 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  𝑅  ∈  ℝ+ )  | 
						
						
							| 4 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ℤ )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							eleq2s | 
							⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  ℤ )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑘  →  ( ( 1  /  2 ) ↑ 𝑛 )  =  ( ( 1  /  2 ) ↑ 𝑘 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ovex | 
							⊢ ( ( 1  /  2 ) ↑ 𝑘 )  ∈  V  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							fvmpt | 
							⊢ ( 𝑘  ∈  ℤ  →  ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( ( 1  /  2 ) ↑ 𝑘 ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							syl | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( ( 1  /  2 ) ↑ 𝑘 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 13 | 
							
								12
							 | 
							reseq2i | 
							⊢ ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ↾  ℕ0 )  =  ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ↾  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							nn0ssz | 
							⊢ ℕ0  ⊆  ℤ  | 
						
						
							| 15 | 
							
								
							 | 
							resmpt | 
							⊢ ( ℕ0  ⊆  ℤ  →  ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ↾  ℕ0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ax-mp | 
							⊢ ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ↾  ℕ0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							eqtr3i | 
							⊢ ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ↾  ( ℤ≥ ‘ 0 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							halfcn | 
							⊢ ( 1  /  2 )  ∈  ℂ  | 
						
						
							| 19 | 
							
								18
							 | 
							a1i | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ( 1  /  2 )  ∈  ℂ )  | 
						
						
							| 20 | 
							
								
							 | 
							halfre | 
							⊢ ( 1  /  2 )  ∈  ℝ  | 
						
						
							| 21 | 
							
								
							 | 
							halfge0 | 
							⊢ 0  ≤  ( 1  /  2 )  | 
						
						
							| 22 | 
							
								
							 | 
							absid | 
							⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  0  ≤  ( 1  /  2 ) )  →  ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 ) )  | 
						
						
							| 23 | 
							
								20 21 22
							 | 
							mp2an | 
							⊢ ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 )  | 
						
						
							| 24 | 
							
								
							 | 
							halflt1 | 
							⊢ ( 1  /  2 )  <  1  | 
						
						
							| 25 | 
							
								23 24
							 | 
							eqbrtri | 
							⊢ ( abs ‘ ( 1  /  2 ) )  <  1  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ( abs ‘ ( 1  /  2 ) )  <  1 )  | 
						
						
							| 27 | 
							
								19 26
							 | 
							expcnv | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ⇝  0 )  | 
						
						
							| 28 | 
							
								17 27
							 | 
							eqbrtrid | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ↾  ( ℤ≥ ‘ 0 ) )  ⇝  0 )  | 
						
						
							| 29 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 30 | 
							
								
							 | 
							zex | 
							⊢ ℤ  ∈  V  | 
						
						
							| 31 | 
							
								30
							 | 
							mptex | 
							⊢ ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ∈  V  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ∈  V )  | 
						
						
							| 33 | 
							
								
							 | 
							climres | 
							⊢ ( ( 0  ∈  ℤ  ∧  ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ∈  V )  →  ( ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ↾  ( ℤ≥ ‘ 0 ) )  ⇝  0  ↔  ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ⇝  0 ) )  | 
						
						
							| 34 | 
							
								29 32 33
							 | 
							sylancr | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ( ( ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ↾  ( ℤ≥ ‘ 0 ) )  ⇝  0  ↔  ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ⇝  0 ) )  | 
						
						
							| 35 | 
							
								28 34
							 | 
							mpbid | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑛  ∈  ℤ  ↦  ( ( 1  /  2 ) ↑ 𝑛 ) )  ⇝  0 )  | 
						
						
							| 36 | 
							
								1 2 3 11 35
							 | 
							climi0 | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 1  /  2 ) ↑ 𝑘 ) )  <  𝑅 )  | 
						
						
							| 37 | 
							
								1
							 | 
							uztrn2 | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 38 | 
							
								
							 | 
							1rp | 
							⊢ 1  ∈  ℝ+  | 
						
						
							| 39 | 
							
								
							 | 
							rphalfcl | 
							⊢ ( 1  ∈  ℝ+  →  ( 1  /  2 )  ∈  ℝ+ )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							ax-mp | 
							⊢ ( 1  /  2 )  ∈  ℝ+  | 
						
						
							| 41 | 
							
								
							 | 
							rpexpcl | 
							⊢ ( ( ( 1  /  2 )  ∈  ℝ+  ∧  𝑘  ∈  ℤ )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+ )  | 
						
						
							| 42 | 
							
								40 6 41
							 | 
							sylancr | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+ )  | 
						
						
							| 43 | 
							
								
							 | 
							rpre | 
							⊢ ( ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+  →  ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ )  | 
						
						
							| 44 | 
							
								
							 | 
							rpge0 | 
							⊢ ( ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+  →  0  ≤  ( ( 1  /  2 ) ↑ 𝑘 ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							absidd | 
							⊢ ( ( ( 1  /  2 ) ↑ 𝑘 )  ∈  ℝ+  →  ( abs ‘ ( ( 1  /  2 ) ↑ 𝑘 ) )  =  ( ( 1  /  2 ) ↑ 𝑘 ) )  | 
						
						
							| 46 | 
							
								42 45
							 | 
							syl | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( abs ‘ ( ( 1  /  2 ) ↑ 𝑘 ) )  =  ( ( 1  /  2 ) ↑ 𝑘 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							breq1d | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑘  ∈  𝑍 )  →  ( ( abs ‘ ( ( 1  /  2 ) ↑ 𝑘 ) )  <  𝑅  ↔  ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑅 ) )  | 
						
						
							| 48 | 
							
								37 47
							 | 
							sylan2 | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( abs ‘ ( ( 1  /  2 ) ↑ 𝑘 ) )  <  𝑅  ↔  ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑅 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( ( 1  /  2 ) ↑ 𝑘 ) )  <  𝑅  ↔  ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑅 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							ralbidva | 
							⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 1  /  2 ) ↑ 𝑘 ) )  <  𝑅  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑅 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							rexbidva | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 1  /  2 ) ↑ 𝑘 ) )  <  𝑅  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑅 ) )  | 
						
						
							| 52 | 
							
								36 51
							 | 
							mpbid | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑅  ∈  ℝ+ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 1  /  2 ) ↑ 𝑘 )  <  𝑅 )  |