| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
iscmn.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
| 4 |
3 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 5 |
|
raleq |
⊢ ( ( Base ‘ 𝑔 ) = 𝐵 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ) ) |
| 6 |
5
|
raleqbi1dv |
⊢ ( ( Base ‘ 𝑔 ) = 𝐵 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) |
| 9 |
8 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 10 |
9
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 11 |
9
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 13 |
12
|
2ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 14 |
7 13
|
bitrd |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 15 |
|
df-cmn |
⊢ CMnd = { 𝑔 ∈ Mnd ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∀ 𝑦 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑔 ) 𝑥 ) } |
| 16 |
14 15
|
elrab2 |
⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |