| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmnd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 2 |
|
iscmnd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) |
| 3 |
|
iscmnd.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 4 |
|
iscmnd.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 5 |
4
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 6 |
5
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 7 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 8 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 + 𝑥 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 10 |
1 9
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 11 |
1 10
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 12 |
11
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 13 |
3 6 12
|
mpbi2and |
⊢ ( 𝜑 → ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 16 |
14 15
|
iscmn |
⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 17 |
13 16
|
sylibr |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |