| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmp.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
pweq |
⊢ ( 𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽 ) |
| 3 |
|
unieq |
⊢ ( 𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽 ) |
| 4 |
3 1
|
eqtr4di |
⊢ ( 𝑥 = 𝐽 → ∪ 𝑥 = 𝑋 ) |
| 5 |
4
|
eqeq1d |
⊢ ( 𝑥 = 𝐽 → ( ∪ 𝑥 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦 ) ) |
| 6 |
4
|
eqeq1d |
⊢ ( 𝑥 = 𝐽 → ( ∪ 𝑥 = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧 ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑥 = 𝐽 → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 8 |
5 7
|
imbi12d |
⊢ ( 𝑥 = 𝐽 → ( ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) ↔ ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 9 |
2 8
|
raleqbidv |
⊢ ( 𝑥 = 𝐽 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 10 |
|
df-cmp |
⊢ Comp = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) } |
| 11 |
9 10
|
elrab2 |
⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |