Step |
Hyp |
Ref |
Expression |
1 |
|
iscms.1 |
⊢ 𝑋 = ( Base ‘ 𝑀 ) |
2 |
|
iscms.2 |
⊢ 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) |
3 |
|
fvexd |
⊢ ( 𝑤 = 𝑀 → ( Base ‘ 𝑤 ) ∈ V ) |
4 |
|
fveq2 |
⊢ ( 𝑤 = 𝑀 → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑀 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑀 ) ) |
6 |
|
id |
⊢ ( 𝑏 = ( Base ‘ 𝑤 ) → 𝑏 = ( Base ‘ 𝑤 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑤 = 𝑀 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑀 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑀 → ( Base ‘ 𝑤 ) = 𝑋 ) |
9 |
6 8
|
sylan9eqr |
⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → 𝑏 = 𝑋 ) |
10 |
9
|
sqxpeqd |
⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( 𝑏 × 𝑏 ) = ( 𝑋 × 𝑋 ) ) |
11 |
5 10
|
reseq12d |
⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
12 |
11 2
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) = 𝐷 ) |
13 |
9
|
fveq2d |
⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( CMet ‘ 𝑏 ) = ( CMet ‘ 𝑋 ) ) |
14 |
12 13
|
eleq12d |
⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) ↔ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
15 |
3 14
|
sbcied |
⊢ ( 𝑤 = 𝑀 → ( [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) ↔ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
16 |
|
df-cms |
⊢ CMetSp = { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) } |
17 |
15 16
|
elrab2 |
⊢ ( 𝑀 ∈ CMetSp ↔ ( 𝑀 ∈ MetSp ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |