| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnpval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) |
| 2 |
1
|
eleq2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) ) |
| 3 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) ) |
| 5 |
|
imaeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 “ 𝑥 ) = ( 𝐹 “ 𝑥 ) ) |
| 6 |
5
|
sseq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) |
| 7 |
6
|
anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 9 |
4 8
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 11 |
10
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ↔ ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 12 |
|
toponmax |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝐾 ) |
| 13 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 14 |
|
elmapg |
⊢ ( ( 𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐽 ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 15 |
12 13 14
|
syl2anr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 16 |
15
|
anbi1d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 17 |
11 16
|
bitrid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 18 |
17
|
3adant3 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 19 |
2 18
|
bitrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |