| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 2 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 3 |
2
|
iscnrm |
⊢ ( 𝐽 ∈ CNrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| 4 |
3
|
baib |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ CNrm ↔ ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ CNrm ↔ ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| 6 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 7 |
6
|
pweqd |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝒫 𝑋 = 𝒫 ∪ 𝐽 ) |
| 8 |
7
|
raleqdv |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ↔ ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| 9 |
5 8
|
bitr4d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ CNrm ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |