| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isconn.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | id | ⊢ ( 𝑗  =  𝐽  →  𝑗  =  𝐽 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑗  =  𝐽  →  ( Clsd ‘ 𝑗 )  =  ( Clsd ‘ 𝐽 ) ) | 
						
							| 4 | 2 3 | ineq12d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑗  ∩  ( Clsd ‘ 𝑗 ) )  =  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 5 |  | unieq | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  ∪  𝐽 ) | 
						
							| 6 | 5 1 | eqtr4di | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  𝑋 ) | 
						
							| 7 | 6 | preq2d | ⊢ ( 𝑗  =  𝐽  →  { ∅ ,  ∪  𝑗 }  =  { ∅ ,  𝑋 } ) | 
						
							| 8 | 4 7 | eqeq12d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑗  ∩  ( Clsd ‘ 𝑗 ) )  =  { ∅ ,  ∪  𝑗 }  ↔  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  =  { ∅ ,  𝑋 } ) ) | 
						
							| 9 |  | df-conn | ⊢ Conn  =  { 𝑗  ∈  Top  ∣  ( 𝑗  ∩  ( Clsd ‘ 𝑗 ) )  =  { ∅ ,  ∪  𝑗 } } | 
						
							| 10 | 8 9 | elrab2 | ⊢ ( 𝐽  ∈  Conn  ↔  ( 𝐽  ∈  Top  ∧  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  =  { ∅ ,  𝑋 } ) ) |