Step |
Hyp |
Ref |
Expression |
1 |
|
isconn.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
id |
⊢ ( 𝑗 = 𝐽 → 𝑗 = 𝐽 ) |
3 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( Clsd ‘ 𝑗 ) = ( Clsd ‘ 𝐽 ) ) |
4 |
2 3
|
ineq12d |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) |
5 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
7 |
6
|
preq2d |
⊢ ( 𝑗 = 𝐽 → { ∅ , ∪ 𝑗 } = { ∅ , 𝑋 } ) |
8 |
4 7
|
eqeq12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } ↔ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |
9 |
|
df-conn |
⊢ Conn = { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } } |
10 |
8 9
|
elrab2 |
⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |