| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isconn.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | isconn | ⊢ ( 𝐽  ∈  Conn  ↔  ( 𝐽  ∈  Top  ∧  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  =  { ∅ ,  𝑋 } ) ) | 
						
							| 3 |  | eqss | ⊢ ( ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  =  { ∅ ,  𝑋 }  ↔  ( ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  ⊆  { ∅ ,  𝑋 }  ∧  { ∅ ,  𝑋 }  ⊆  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) ) ) ) | 
						
							| 4 |  | 0opn | ⊢ ( 𝐽  ∈  Top  →  ∅  ∈  𝐽 ) | 
						
							| 5 |  | 0cld | ⊢ ( 𝐽  ∈  Top  →  ∅  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 6 | 4 5 | elind | ⊢ ( 𝐽  ∈  Top  →  ∅  ∈  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 7 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 8 | 1 | topcld | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 9 | 7 8 | elind | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 10 | 6 9 | prssd | ⊢ ( 𝐽  ∈  Top  →  { ∅ ,  𝑋 }  ⊆  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 11 | 10 | biantrud | ⊢ ( 𝐽  ∈  Top  →  ( ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  ⊆  { ∅ ,  𝑋 }  ↔  ( ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  ⊆  { ∅ ,  𝑋 }  ∧  { ∅ ,  𝑋 }  ⊆  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) ) ) ) ) | 
						
							| 12 | 3 11 | bitr4id | ⊢ ( 𝐽  ∈  Top  →  ( ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  =  { ∅ ,  𝑋 }  ↔  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  ⊆  { ∅ ,  𝑋 } ) ) | 
						
							| 13 | 12 | pm5.32i | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  =  { ∅ ,  𝑋 } )  ↔  ( 𝐽  ∈  Top  ∧  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  ⊆  { ∅ ,  𝑋 } ) ) | 
						
							| 14 | 2 13 | bitri | ⊢ ( 𝐽  ∈  Conn  ↔  ( 𝐽  ∈  Top  ∧  ( 𝐽  ∩  ( Clsd ‘ 𝐽 ) )  ⊆  { ∅ ,  𝑋 } ) ) |