Step |
Hyp |
Ref |
Expression |
1 |
|
isconngr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
dfconngr1 |
⊢ ConnGraph = { 𝑔 ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } |
3 |
2
|
eleq2i |
⊢ ( 𝐺 ∈ ConnGraph ↔ 𝐺 ∈ { 𝑔 ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } ) |
4 |
|
fvex |
⊢ ( Vtx ‘ 𝑔 ) ∈ V |
5 |
|
id |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → 𝑣 = ( Vtx ‘ 𝑔 ) ) |
6 |
|
difeq1 |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → ( 𝑣 ∖ { 𝑘 } ) = ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ) |
7 |
6
|
raleqdv |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → ( ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
8 |
5 7
|
raleqbidv |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → ( ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
9 |
4 8
|
sbcie |
⊢ ( [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) |
10 |
9
|
abbii |
⊢ { 𝑔 ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } = { 𝑔 ∣ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } |
11 |
10
|
eleq2i |
⊢ ( 𝐺 ∈ { 𝑔 ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } ↔ 𝐺 ∈ { 𝑔 ∣ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } ) |
12 |
|
fveq2 |
⊢ ( ℎ = 𝐺 → ( Vtx ‘ ℎ ) = ( Vtx ‘ 𝐺 ) ) |
13 |
12 1
|
eqtr4di |
⊢ ( ℎ = 𝐺 → ( Vtx ‘ ℎ ) = 𝑉 ) |
14 |
13
|
difeq1d |
⊢ ( ℎ = 𝐺 → ( ( Vtx ‘ ℎ ) ∖ { 𝑘 } ) = ( 𝑉 ∖ { 𝑘 } ) ) |
15 |
|
fveq2 |
⊢ ( ℎ = 𝐺 → ( PathsOn ‘ ℎ ) = ( PathsOn ‘ 𝐺 ) ) |
16 |
15
|
oveqd |
⊢ ( ℎ = 𝐺 → ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) = ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) ) |
17 |
16
|
breqd |
⊢ ( ℎ = 𝐺 → ( 𝑓 ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) 𝑝 ↔ 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
18 |
17
|
2exbidv |
⊢ ( ℎ = 𝐺 → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
19 |
14 18
|
raleqbidv |
⊢ ( ℎ = 𝐺 → ( ∀ 𝑛 ∈ ( ( Vtx ‘ ℎ ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) 𝑝 ↔ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
20 |
13 19
|
raleqbidv |
⊢ ( ℎ = 𝐺 → ( ∀ 𝑘 ∈ ( Vtx ‘ ℎ ) ∀ 𝑛 ∈ ( ( Vtx ‘ ℎ ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑔 = ℎ → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ ℎ ) ) |
22 |
21
|
difeq1d |
⊢ ( 𝑔 = ℎ → ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) = ( ( Vtx ‘ ℎ ) ∖ { 𝑘 } ) ) |
23 |
|
fveq2 |
⊢ ( 𝑔 = ℎ → ( PathsOn ‘ 𝑔 ) = ( PathsOn ‘ ℎ ) ) |
24 |
23
|
oveqd |
⊢ ( 𝑔 = ℎ → ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) = ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) ) |
25 |
24
|
breqd |
⊢ ( 𝑔 = ℎ → ( 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ 𝑓 ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) 𝑝 ) ) |
26 |
25
|
2exbidv |
⊢ ( 𝑔 = ℎ → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) 𝑝 ) ) |
27 |
22 26
|
raleqbidv |
⊢ ( 𝑔 = ℎ → ( ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ ℎ ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) 𝑝 ) ) |
28 |
21 27
|
raleqbidv |
⊢ ( 𝑔 = ℎ → ( ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ ( Vtx ‘ ℎ ) ∀ 𝑛 ∈ ( ( Vtx ‘ ℎ ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) 𝑝 ) ) |
29 |
28
|
cbvabv |
⊢ { 𝑔 ∣ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } = { ℎ ∣ ∀ 𝑘 ∈ ( Vtx ‘ ℎ ) ∀ 𝑛 ∈ ( ( Vtx ‘ ℎ ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ ℎ ) 𝑛 ) 𝑝 } |
30 |
20 29
|
elab2g |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ { 𝑔 ∣ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
31 |
11 30
|
syl5bb |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ { 𝑔 ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |
32 |
3 31
|
syl5bb |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ ConnGraph ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) ) |