| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscph.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
iscph.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
iscph.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 4 |
|
iscph.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
iscph.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
|
elin |
⊢ ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ↔ ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ) ) |
| 7 |
6
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 8 |
|
df-3an |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 9 |
7 8
|
bitr4i |
⊢ ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 10 |
9
|
anbi1i |
⊢ ( ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
| 11 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) |
| 12 |
|
fvexd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) ∈ V ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑓 = ( Scalar ‘ 𝑤 ) ) |
| 14 |
|
simpll |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑤 = 𝑊 ) |
| 15 |
14
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
| 16 |
15 4
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 17 |
13 16
|
eqtrd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑓 = 𝐹 ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑘 = ( Base ‘ 𝑓 ) ) |
| 19 |
17
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
| 20 |
19 5
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
| 21 |
18 20
|
eqtrd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑘 = 𝐾 ) |
| 22 |
21
|
oveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ℂfld ↾s 𝑘 ) = ( ℂfld ↾s 𝐾 ) ) |
| 23 |
17 22
|
eqeq12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑓 = ( ℂfld ↾s 𝑘 ) ↔ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 24 |
21
|
ineq1d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑘 ∩ ( 0 [,) +∞ ) ) = ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) |
| 25 |
24
|
imaeq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) = ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) |
| 26 |
25 21
|
sseq12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ↔ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ) ) |
| 27 |
14
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( norm ‘ 𝑤 ) = ( norm ‘ 𝑊 ) ) |
| 28 |
27 3
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( norm ‘ 𝑤 ) = 𝑁 ) |
| 29 |
14
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
| 30 |
29 1
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 31 |
14
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ·𝑖 ‘ 𝑤 ) = ( ·𝑖 ‘ 𝑊 ) ) |
| 32 |
31 2
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ·𝑖 ‘ 𝑤 ) = , ) |
| 33 |
32
|
oveqd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) = ( 𝑥 , 𝑥 ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) = ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
| 35 |
30 34
|
mpteq12dv |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 36 |
28 35
|
eqeq12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ↔ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
| 37 |
23 26 36
|
3anbi123d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
| 38 |
|
3anass |
⊢ ( ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
| 39 |
37 38
|
bitrdi |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
| 40 |
12 39
|
sbcied |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
| 41 |
11 40
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
| 42 |
|
df-cph |
⊢ ℂPreHil = { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } |
| 43 |
41 42
|
elrab2 |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
| 44 |
|
anass |
⊢ ( ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ↔ ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
| 45 |
43 44
|
bitr4i |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
| 46 |
|
3anass |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
| 47 |
10 45 46
|
3bitr4i |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |