Step |
Hyp |
Ref |
Expression |
1 |
|
iscph.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
iscph.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
iscph.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
4 |
|
iscph.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
5 |
|
iscph.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
6 |
|
elin |
⊢ ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ↔ ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ) ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
8 |
|
df-3an |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
9 |
7 8
|
bitr4i |
⊢ ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
10 |
9
|
anbi1i |
⊢ ( ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
11 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) |
12 |
|
fvexd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) ∈ V ) |
13 |
|
simplr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑓 = ( Scalar ‘ 𝑤 ) ) |
14 |
|
simpll |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑤 = 𝑊 ) |
15 |
14
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
16 |
15 4
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
17 |
13 16
|
eqtrd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑓 = 𝐹 ) |
18 |
|
simpr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑘 = ( Base ‘ 𝑓 ) ) |
19 |
17
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
20 |
19 5
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
21 |
18 20
|
eqtrd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑘 = 𝐾 ) |
22 |
21
|
oveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ℂfld ↾s 𝑘 ) = ( ℂfld ↾s 𝐾 ) ) |
23 |
17 22
|
eqeq12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑓 = ( ℂfld ↾s 𝑘 ) ↔ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
24 |
21
|
ineq1d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑘 ∩ ( 0 [,) +∞ ) ) = ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) |
25 |
24
|
imaeq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) = ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) |
26 |
25 21
|
sseq12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ↔ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ) ) |
27 |
14
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( norm ‘ 𝑤 ) = ( norm ‘ 𝑊 ) ) |
28 |
27 3
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( norm ‘ 𝑤 ) = 𝑁 ) |
29 |
14
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
30 |
29 1
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑤 ) = 𝑉 ) |
31 |
14
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ·𝑖 ‘ 𝑤 ) = ( ·𝑖 ‘ 𝑊 ) ) |
32 |
31 2
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ·𝑖 ‘ 𝑤 ) = , ) |
33 |
32
|
oveqd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) = ( 𝑥 , 𝑥 ) ) |
34 |
33
|
fveq2d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) = ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
35 |
30 34
|
mpteq12dv |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
36 |
28 35
|
eqeq12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ↔ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
37 |
23 26 36
|
3anbi123d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
38 |
|
3anass |
⊢ ( ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
39 |
37 38
|
bitrdi |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
40 |
12 39
|
sbcied |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
41 |
11 40
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
42 |
|
df-cph |
⊢ ℂPreHil = { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } |
43 |
41 42
|
elrab2 |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
44 |
|
anass |
⊢ ( ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ↔ ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
45 |
43 44
|
bitr4i |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
46 |
|
3anass |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
47 |
10 45 46
|
3bitr4i |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |