Step |
Hyp |
Ref |
Expression |
1 |
|
cplgruvtxb.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
cplgruvtxb |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ ComplGraph ↔ ( UnivVtx ‘ 𝐺 ) = 𝑉 ) ) |
3 |
|
eqss |
⊢ ( ( UnivVtx ‘ 𝐺 ) = 𝑉 ↔ ( ( UnivVtx ‘ 𝐺 ) ⊆ 𝑉 ∧ 𝑉 ⊆ ( UnivVtx ‘ 𝐺 ) ) ) |
4 |
1
|
uvtxssvtx |
⊢ ( UnivVtx ‘ 𝐺 ) ⊆ 𝑉 |
5 |
|
dfss3 |
⊢ ( 𝑉 ⊆ ( UnivVtx ‘ 𝐺 ) ↔ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) |
6 |
5
|
anbi2i |
⊢ ( ( ( UnivVtx ‘ 𝐺 ) ⊆ 𝑉 ∧ 𝑉 ⊆ ( UnivVtx ‘ 𝐺 ) ) ↔ ( ( UnivVtx ‘ 𝐺 ) ⊆ 𝑉 ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
7 |
4 6
|
mpbiran |
⊢ ( ( ( UnivVtx ‘ 𝐺 ) ⊆ 𝑉 ∧ 𝑉 ⊆ ( UnivVtx ‘ 𝐺 ) ) ↔ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) |
8 |
3 7
|
bitri |
⊢ ( ( UnivVtx ‘ 𝐺 ) = 𝑉 ↔ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) |
9 |
2 8
|
bitrdi |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |