Step |
Hyp |
Ref |
Expression |
1 |
|
cplgruvtxb.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
iscplgredg.v |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1
|
iscplgrnb |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
4 |
|
df-3an |
⊢ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ≠ 𝑣 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ↔ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ≠ 𝑣 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
5 |
4
|
a1i |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ≠ 𝑣 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ↔ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ≠ 𝑣 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) ) |
6 |
1 2
|
nbgrel |
⊢ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ≠ 𝑣 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
7 |
6
|
a1i |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ≠ 𝑣 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) ) |
8 |
|
eldifsn |
⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ↔ ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣 ) ) |
9 |
|
simpr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
10 |
|
simpl |
⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣 ) → 𝑛 ∈ 𝑉 ) |
11 |
9 10
|
anim12ci |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣 ) ) → ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) |
12 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣 ) ) → 𝑛 ≠ 𝑣 ) |
13 |
11 12
|
jca |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣 ) ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ≠ 𝑣 ) ) |
14 |
8 13
|
sylan2b |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ≠ 𝑣 ) ) |
15 |
14
|
biantrurd |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → ( ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ≠ 𝑣 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) ) |
16 |
5 7 15
|
3bitr4d |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
17 |
16
|
ralbidva |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉 ) → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
18 |
17
|
ralbidva |
⊢ ( 𝐺 ∈ 𝑊 → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
19 |
3 18
|
bitrd |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∃ 𝑒 ∈ 𝐸 { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |