Step |
Hyp |
Ref |
Expression |
1 |
|
iscringd.1 |
⊢ ( 𝜑 → 𝐺 ∈ AbelOp ) |
2 |
|
iscringd.2 |
⊢ ( 𝜑 → 𝑋 = ran 𝐺 ) |
3 |
|
iscringd.3 |
⊢ ( 𝜑 → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
4 |
|
iscringd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ) |
5 |
|
iscringd.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) |
6 |
|
iscringd.6 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑋 ) |
7 |
|
iscringd.7 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝐻 𝑈 ) = 𝑦 ) |
8 |
|
iscringd.8 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
9 |
|
id |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) |
10 |
9
|
3com13 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) |
11 |
|
eleq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑋 ↔ 𝑧 ∈ 𝑋 ) ) |
12 |
11
|
3anbi1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) |
13 |
12
|
anbi2d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 𝐻 𝑤 ) = ( 𝑥 𝐻 𝑧 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑦 𝐻 𝑤 ) = ( 𝑦 𝐻 𝑧 ) ) |
17 |
15 16
|
oveq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
18 |
14 17
|
eqeq12d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) |
19 |
13 18
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
20 |
|
eleq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑋 ↔ 𝑥 ∈ 𝑋 ) ) |
21 |
20
|
3anbi3d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ↔ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) |
22 |
21
|
anbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) ) |
23 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐺 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
24 |
23
|
oveq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) ) |
25 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐻 𝑤 ) = ( 𝑥 𝐻 𝑤 ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
27 |
24 26
|
eqeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) |
28 |
22 27
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) ) |
29 |
|
eleq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑋 ↔ 𝑤 ∈ 𝑋 ) ) |
30 |
29
|
3anbi1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ↔ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) |
31 |
30
|
anbi2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) ) |
33 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 𝐻 𝑥 ) = ( 𝑧 𝐻 𝑤 ) ) |
34 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑤 ) ) |
35 |
33 34
|
oveq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
36 |
32 35
|
eqeq12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) |
37 |
31 36
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) ) |
38 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐺 ∈ AbelOp ) |
39 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
40 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑋 = ran 𝐺 ) |
41 |
39 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ ran 𝐺 ) |
42 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
43 |
42 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ ran 𝐺 ) |
44 |
|
eqid |
⊢ ran 𝐺 = ran 𝐺 |
45 |
44
|
ablocom |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) → ( 𝑧 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑧 ) ) |
46 |
38 41 43 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑧 ) ) |
47 |
46
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
48 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
49 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
50 |
38 49
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐺 ∈ GrpOp ) |
51 |
44
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ ran 𝐺 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐺 𝑧 ) ∈ ran 𝐺 ) |
52 |
50 43 41 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐺 𝑧 ) ∈ ran 𝐺 ) |
53 |
52 40
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) |
54 |
48 53
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) |
55 |
|
ovex |
⊢ ( 𝑦 𝐺 𝑧 ) ∈ V |
56 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( 𝑤 ∈ 𝑋 ↔ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) |
57 |
56
|
anbi2d |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) ) |
58 |
57
|
anbi2d |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) ) ) |
59 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) |
60 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( 𝑤 𝐻 𝑥 ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
61 |
59 60
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ↔ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) ) |
62 |
58 61
|
imbi12d |
⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) ) ) |
63 |
|
eleq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑋 ↔ 𝑤 ∈ 𝑋 ) ) |
64 |
63
|
anbi2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) |
65 |
64
|
anbi2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) ) |
66 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑤 ) ) |
67 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝐻 𝑥 ) = ( 𝑤 𝐻 𝑥 ) ) |
68 |
66 67
|
eqeq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ↔ ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) ) |
69 |
65 68
|
imbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) ) ) |
70 |
69 8
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) |
71 |
55 62 70
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
72 |
54 71
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
73 |
8
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
74 |
|
eleq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑋 ↔ 𝑧 ∈ 𝑋 ) ) |
75 |
74
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) |
76 |
75
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) ) |
77 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑧 ) ) |
78 |
|
oveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 𝑥 ) = ( 𝑧 𝐻 𝑥 ) ) |
79 |
77 78
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ↔ ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) ) |
80 |
76 79
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) ) ) |
81 |
80 8
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) |
82 |
81
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) |
83 |
73 82
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) = ( ( 𝑦 𝐻 𝑥 ) 𝐺 ( 𝑧 𝐻 𝑥 ) ) ) |
84 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
85 |
84 42 48
|
fovrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐻 𝑥 ) ∈ 𝑋 ) |
86 |
85 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐻 𝑥 ) ∈ ran 𝐺 ) |
87 |
84 39 48
|
fovrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐻 𝑥 ) ∈ 𝑋 ) |
88 |
87 40
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐻 𝑥 ) ∈ ran 𝐺 ) |
89 |
44
|
ablocom |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝑦 𝐻 𝑥 ) ∈ ran 𝐺 ∧ ( 𝑧 𝐻 𝑥 ) ∈ ran 𝐺 ) → ( ( 𝑦 𝐻 𝑥 ) 𝐺 ( 𝑧 𝐻 𝑥 ) ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
90 |
38 86 88 89
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 𝐻 𝑥 ) 𝐺 ( 𝑧 𝐻 𝑥 ) ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
91 |
5 83 90
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
92 |
47 72 91
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
93 |
37 92
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
94 |
28 93
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
95 |
19 94
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
96 |
10 95
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
97 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑈 ∈ 𝑋 ) |
98 |
|
oveq1 |
⊢ ( 𝑥 = 𝑈 → ( 𝑥 𝐻 𝑦 ) = ( 𝑈 𝐻 𝑦 ) ) |
99 |
|
oveq2 |
⊢ ( 𝑥 = 𝑈 → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑈 ) ) |
100 |
98 99
|
eqeq12d |
⊢ ( 𝑥 = 𝑈 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ↔ ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) ) |
101 |
100
|
imbi2d |
⊢ ( 𝑥 = 𝑈 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) ) ) |
102 |
8
|
an12s |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
103 |
102
|
ex |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ) |
104 |
101 103
|
vtoclga |
⊢ ( 𝑈 ∈ 𝑋 → ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) ) |
105 |
97 104
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) |
106 |
105 7
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = 𝑦 ) |
107 |
1 2 3 4 5 96 6 106 7
|
isrngod |
⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ RingOps ) |
108 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ran 𝐺 ) ) |
109 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ran 𝐺 ) ) |
110 |
108 109
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) ) ) |
111 |
110
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
112 |
111 8
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
113 |
112
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
114 |
|
rnexg |
⊢ ( 𝐺 ∈ AbelOp → ran 𝐺 ∈ V ) |
115 |
1 114
|
syl |
⊢ ( 𝜑 → ran 𝐺 ∈ V ) |
116 |
2 115
|
eqeltrd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
117 |
116 116
|
xpexd |
⊢ ( 𝜑 → ( 𝑋 × 𝑋 ) ∈ V ) |
118 |
3 117
|
fexd |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
119 |
|
iscom2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 ∈ V ) → ( 〈 𝐺 , 𝐻 〉 ∈ Com2 ↔ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ) |
120 |
1 118 119
|
syl2anc |
⊢ ( 𝜑 → ( 〈 𝐺 , 𝐻 〉 ∈ Com2 ↔ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ) |
121 |
113 120
|
mpbird |
⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ Com2 ) |
122 |
|
iscrngo |
⊢ ( 〈 𝐺 , 𝐻 〉 ∈ CRingOps ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ 〈 𝐺 , 𝐻 〉 ∈ Com2 ) ) |
123 |
107 121 122
|
sylanbrc |
⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ CRingOps ) |