Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ringmgp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| Assertion | iscrng | ⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringmgp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 2 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) | |
| 3 | 2 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = 𝐺 ) |
| 4 | 3 | eleq1d | ⊢ ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ∈ CMnd ↔ 𝐺 ∈ CMnd ) ) |
| 5 | df-cring | ⊢ CRing = { 𝑟 ∈ Ring ∣ ( mulGrp ‘ 𝑟 ) ∈ CMnd } | |
| 6 | 4 5 | elrab2 | ⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd ) ) |