Step |
Hyp |
Ref |
Expression |
1 |
|
ringcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringcl.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
4 |
3
|
iscrng |
⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) ) |
5 |
3
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
6 |
3 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
7 |
3 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
8 |
6 7
|
iscmn |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ↔ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |
9 |
8
|
baib |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |
10 |
5 9
|
syl |
⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |
11 |
10
|
pm5.32i |
⊢ ( ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |
12 |
4 11
|
bitri |
⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |