| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ringcl.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 4 | 3 | iscrng | ⊢ ( 𝑅  ∈  CRing  ↔  ( 𝑅  ∈  Ring  ∧  ( mulGrp ‘ 𝑅 )  ∈  CMnd ) ) | 
						
							| 5 | 3 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 6 | 3 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 7 | 3 2 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 8 | 6 7 | iscmn | ⊢ ( ( mulGrp ‘ 𝑅 )  ∈  CMnd  ↔  ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) ) | 
						
							| 9 | 8 | baib | ⊢ ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  →  ( ( mulGrp ‘ 𝑅 )  ∈  CMnd  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) ) | 
						
							| 10 | 5 9 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( ( mulGrp ‘ 𝑅 )  ∈  CMnd  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) ) | 
						
							| 11 | 10 | pm5.32i | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( mulGrp ‘ 𝑅 )  ∈  CMnd )  ↔  ( 𝑅  ∈  Ring  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) ) | 
						
							| 12 | 4 11 | bitri | ⊢ ( 𝑅  ∈  CRing  ↔  ( 𝑅  ∈  Ring  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) ) |