Step |
Hyp |
Ref |
Expression |
1 |
|
isringd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
2 |
|
isringd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
3 |
|
isringd.t |
⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |
4 |
|
isringd.g |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
5 |
|
isringd.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
6 |
|
isringd.a |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
7 |
|
isringd.d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
8 |
|
isringd.e |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
9 |
|
isringd.u |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
10 |
|
isringd.i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = 𝑥 ) |
11 |
|
isringd.h |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 1 ) = 𝑥 ) |
12 |
|
iscrngd.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
isringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
14 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
14 15
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
17 |
1 16
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
18 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
19 |
14 18
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
20 |
3 19
|
eqtrdi |
⊢ ( 𝜑 → · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
21 |
17 20 5 6 9 10 11
|
ismndd |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
22 |
17 20 21 12
|
iscmnd |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
23 |
14
|
iscrng |
⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) ) |
24 |
13 22 23
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |