Step |
Hyp |
Ref |
Expression |
1 |
|
cssval.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
2 |
|
cssval.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
1 2
|
cssval |
⊢ ( 𝑊 ∈ 𝑋 → 𝐶 = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
4 |
3
|
eleq2d |
⊢ ( 𝑊 ∈ 𝑋 → ( 𝑆 ∈ 𝐶 ↔ 𝑆 ∈ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) ) |
5 |
|
id |
⊢ ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
6 |
|
fvex |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ V |
7 |
5 6
|
eqeltrdi |
⊢ ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑆 ∈ V ) |
8 |
|
id |
⊢ ( 𝑠 = 𝑆 → 𝑠 = 𝑆 ) |
9 |
|
2fveq3 |
⊢ ( 𝑠 = 𝑆 → ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
11 |
7 10
|
elab3 |
⊢ ( 𝑆 ∈ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
12 |
4 11
|
bitrdi |
⊢ ( 𝑊 ∈ 𝑋 → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |