Metamath Proof Explorer


Theorem iscss

Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o = ( ocv ‘ 𝑊 )
cssval.c 𝐶 = ( ClSubSp ‘ 𝑊 )
Assertion iscss ( 𝑊𝑋 → ( 𝑆𝐶𝑆 = ( ‘ ( 𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 cssval.o = ( ocv ‘ 𝑊 )
2 cssval.c 𝐶 = ( ClSubSp ‘ 𝑊 )
3 1 2 cssval ( 𝑊𝑋𝐶 = { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } )
4 3 eleq2d ( 𝑊𝑋 → ( 𝑆𝐶𝑆 ∈ { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } ) )
5 id ( 𝑆 = ( ‘ ( 𝑆 ) ) → 𝑆 = ( ‘ ( 𝑆 ) ) )
6 fvex ( ‘ ( 𝑆 ) ) ∈ V
7 5 6 eqeltrdi ( 𝑆 = ( ‘ ( 𝑆 ) ) → 𝑆 ∈ V )
8 id ( 𝑠 = 𝑆𝑠 = 𝑆 )
9 2fveq3 ( 𝑠 = 𝑆 → ( ‘ ( 𝑠 ) ) = ( ‘ ( 𝑆 ) ) )
10 8 9 eqeq12d ( 𝑠 = 𝑆 → ( 𝑠 = ( ‘ ( 𝑠 ) ) ↔ 𝑆 = ( ‘ ( 𝑆 ) ) ) )
11 7 10 elab3 ( 𝑆 ∈ { 𝑠𝑠 = ( ‘ ( 𝑠 ) ) } ↔ 𝑆 = ( ‘ ( 𝑆 ) ) )
12 4 11 bitrdi ( 𝑊𝑋 → ( 𝑆𝐶𝑆 = ( ‘ ( 𝑆 ) ) ) )