Step |
Hyp |
Ref |
Expression |
1 |
|
cssss.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
cssss.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
|
ocvcss.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
4 |
3 2
|
iscss |
⊢ ( 𝑊 ∈ PreHil → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
6 |
1 3
|
ocvocv |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
7 |
|
eqss |
⊢ ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |
8 |
7
|
baib |
⊢ ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |
9 |
6 8
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |
10 |
5 9
|
bitrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑆 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |