Step |
Hyp |
Ref |
Expression |
1 |
|
iscusgrvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
iscusgredg.v |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
iscusgr |
⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ) |
4 |
1
|
iscplgrnb |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑘 ) ) ) |
5 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑘 ) ↔ { 𝑛 , 𝑘 } ∈ 𝐸 ) ) |
6 |
5
|
2ralbidv |
⊢ ( 𝐺 ∈ USGraph → ( ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑘 ) ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) { 𝑛 , 𝑘 } ∈ 𝐸 ) ) |
7 |
4 6
|
bitrd |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) { 𝑛 , 𝑘 } ∈ 𝐸 ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) { 𝑛 , 𝑘 } ∈ 𝐸 ) ) |
9 |
3 8
|
bitri |
⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑘 } ) { 𝑛 , 𝑘 } ∈ 𝐸 ) ) |