Step |
Hyp |
Ref |
Expression |
1 |
|
iscusp2.1 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
iscusp2.2 |
⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) |
3 |
|
iscusp2.3 |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
4 |
|
iscusp |
⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) |
5 |
1
|
fveq2i |
⊢ ( Fil ‘ 𝐵 ) = ( Fil ‘ ( Base ‘ 𝑊 ) ) |
6 |
2
|
fveq2i |
⊢ ( CauFilu ‘ 𝑈 ) = ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) |
7 |
6
|
eleq2i |
⊢ ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) ↔ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) |
8 |
3
|
oveq1i |
⊢ ( 𝐽 fLim 𝑐 ) = ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) |
9 |
8
|
neeq1i |
⊢ ( ( 𝐽 fLim 𝑐 ) ≠ ∅ ↔ ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) |
10 |
7 9
|
imbi12i |
⊢ ( ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( 𝐽 fLim 𝑐 ) ≠ ∅ ) ↔ ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) |
11 |
5 10
|
raleqbii |
⊢ ( ∀ 𝑐 ∈ ( Fil ‘ 𝐵 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( 𝐽 fLim 𝑐 ) ≠ ∅ ) ↔ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) |
12 |
11
|
anbi2i |
⊢ ( ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ 𝐵 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( 𝐽 fLim 𝑐 ) ≠ ∅ ) ) ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) |
13 |
4 12
|
bitr4i |
⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ 𝐵 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( 𝐽 fLim 𝑐 ) ≠ ∅ ) ) ) |