| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscvlat.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							iscvlat.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							iscvlat.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							iscvlat.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( Atoms ‘ 𝑘 )  =  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 6 | 
							
								5 4
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( Atoms ‘ 𝑘 )  =  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( Base ‘ 𝑘 )  =  ( Base ‘ 𝐾 ) )  | 
						
						
							| 8 | 
							
								7 1
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( Base ‘ 𝑘 )  =  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( le ‘ 𝑘 )  =  ( le ‘ 𝐾 ) )  | 
						
						
							| 10 | 
							
								9 2
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( le ‘ 𝑘 )  =   ≤  )  | 
						
						
							| 11 | 
							
								10
							 | 
							breqd | 
							⊢ ( 𝑘  =  𝐾  →  ( 𝑝 ( le ‘ 𝑘 ) 𝑥  ↔  𝑝  ≤  𝑥 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							notbid | 
							⊢ ( 𝑘  =  𝐾  →  ( ¬  𝑝 ( le ‘ 𝑘 ) 𝑥  ↔  ¬  𝑝  ≤  𝑥 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑘  =  𝐾  →  𝑝  =  𝑝 )  | 
						
						
							| 14 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( join ‘ 𝑘 )  =  ( join ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								14 3
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( join ‘ 𝑘 )  =   ∨  )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveqd | 
							⊢ ( 𝑘  =  𝐾  →  ( 𝑥 ( join ‘ 𝑘 ) 𝑞 )  =  ( 𝑥  ∨  𝑞 ) )  | 
						
						
							| 17 | 
							
								13 10 16
							 | 
							breq123d | 
							⊢ ( 𝑘  =  𝐾  →  ( 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 )  ↔  𝑝  ≤  ( 𝑥  ∨  𝑞 ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							anbi12d | 
							⊢ ( 𝑘  =  𝐾  →  ( ( ¬  𝑝 ( le ‘ 𝑘 ) 𝑥  ∧  𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) )  ↔  ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑘  =  𝐾  →  𝑞  =  𝑞 )  | 
						
						
							| 20 | 
							
								15
							 | 
							oveqd | 
							⊢ ( 𝑘  =  𝐾  →  ( 𝑥 ( join ‘ 𝑘 ) 𝑝 )  =  ( 𝑥  ∨  𝑝 ) )  | 
						
						
							| 21 | 
							
								19 10 20
							 | 
							breq123d | 
							⊢ ( 𝑘  =  𝐾  →  ( 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 )  ↔  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							imbi12d | 
							⊢ ( 𝑘  =  𝐾  →  ( ( ( ¬  𝑝 ( le ‘ 𝑘 ) 𝑥  ∧  𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) )  →  𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) )  ↔  ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  | 
						
						
							| 23 | 
							
								8 22
							 | 
							raleqbidv | 
							⊢ ( 𝑘  =  𝐾  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑘 ) ( ( ¬  𝑝 ( le ‘ 𝑘 ) 𝑥  ∧  𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) )  →  𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  | 
						
						
							| 24 | 
							
								6 23
							 | 
							raleqbidv | 
							⊢ ( 𝑘  =  𝐾  →  ( ∀ 𝑞  ∈  ( Atoms ‘ 𝑘 ) ∀ 𝑥  ∈  ( Base ‘ 𝑘 ) ( ( ¬  𝑝 ( le ‘ 𝑘 ) 𝑥  ∧  𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) )  →  𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) )  ↔  ∀ 𝑞  ∈  𝐴 ∀ 𝑥  ∈  𝐵 ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  | 
						
						
							| 25 | 
							
								6 24
							 | 
							raleqbidv | 
							⊢ ( 𝑘  =  𝐾  →  ( ∀ 𝑝  ∈  ( Atoms ‘ 𝑘 ) ∀ 𝑞  ∈  ( Atoms ‘ 𝑘 ) ∀ 𝑥  ∈  ( Base ‘ 𝑘 ) ( ( ¬  𝑝 ( le ‘ 𝑘 ) 𝑥  ∧  𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) )  →  𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) )  ↔  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ∀ 𝑥  ∈  𝐵 ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							df-cvlat | 
							⊢ CvLat  =  { 𝑘  ∈  AtLat  ∣  ∀ 𝑝  ∈  ( Atoms ‘ 𝑘 ) ∀ 𝑞  ∈  ( Atoms ‘ 𝑘 ) ∀ 𝑥  ∈  ( Base ‘ 𝑘 ) ( ( ¬  𝑝 ( le ‘ 𝑘 ) 𝑥  ∧  𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) )  →  𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) }  | 
						
						
							| 27 | 
							
								25 26
							 | 
							elrab2 | 
							⊢ ( 𝐾  ∈  CvLat  ↔  ( 𝐾  ∈  AtLat  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ∀ 𝑥  ∈  𝐵 ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  |