Step |
Hyp |
Ref |
Expression |
1 |
|
iscvlat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
iscvlat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
iscvlat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
iscvlat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
6 |
5 4
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
7 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
9 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
11 |
10
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( le ‘ 𝑘 ) 𝑥 ↔ 𝑝 ≤ 𝑥 ) ) |
12 |
11
|
notbid |
⊢ ( 𝑘 = 𝐾 → ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ↔ ¬ 𝑝 ≤ 𝑥 ) ) |
13 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → 𝑝 = 𝑝 ) |
14 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
16 |
15
|
oveqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) = ( 𝑥 ∨ 𝑞 ) ) |
17 |
13 10 16
|
breq123d |
⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ↔ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) ) |
18 |
12 17
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) ↔ ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) ) ) |
19 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → 𝑞 = 𝑞 ) |
20 |
15
|
oveqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) = ( 𝑥 ∨ 𝑝 ) ) |
21 |
19 10 20
|
breq123d |
⊢ ( 𝑘 = 𝐾 → ( 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ↔ 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) |
22 |
18 21
|
imbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) ↔ ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
23 |
8 22
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
24 |
6 23
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) ↔ ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
25 |
6 24
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
26 |
|
df-cvlat |
⊢ CvLat = { 𝑘 ∈ AtLat ∣ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑥 ∧ 𝑝 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝑘 ) ( 𝑥 ( join ‘ 𝑘 ) 𝑝 ) ) } |
27 |
25 26
|
elrab2 |
⊢ ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |