| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iscvlat2.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							iscvlat2.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							iscvlat2.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							iscvlat2.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							iscvlat2.z | 
							⊢  0   =  ( 0. ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							iscvlat2.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								1 2 3 6
							 | 
							iscvlat | 
							⊢ ( 𝐾  ∈  CvLat  ↔  ( 𝐾  ∈  AtLat  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ∀ 𝑥  ∈  𝐵 ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  ( 𝑝  ∈  𝐴  ∧  𝑞  ∈  𝐴 ) )  ∧  𝑥  ∈  𝐵 )  →  𝐾  ∈  AtLat )  | 
						
						
							| 9 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  ( 𝑝  ∈  𝐴  ∧  𝑞  ∈  𝐴 ) )  ∧  𝑥  ∈  𝐵 )  →  𝑝  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  ( 𝑝  ∈  𝐴  ∧  𝑞  ∈  𝐴 ) )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								1 2 4 5 6
							 | 
							atnle | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑝  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  ( ¬  𝑝  ≤  𝑥  ↔  ( 𝑝  ∧  𝑥 )  =   0  ) )  | 
						
						
							| 12 | 
							
								8 9 10 11
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  ( 𝑝  ∈  𝐴  ∧  𝑞  ∈  𝐴 ) )  ∧  𝑥  ∈  𝐵 )  →  ( ¬  𝑝  ≤  𝑥  ↔  ( 𝑝  ∧  𝑥 )  =   0  ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							anbi1d | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  ( 𝑝  ∈  𝐴  ∧  𝑞  ∈  𝐴 ) )  ∧  𝑥  ∈  𝐵 )  →  ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  ↔  ( ( 𝑝  ∧  𝑥 )  =   0   ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imbi1d | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  ( 𝑝  ∈  𝐴  ∧  𝑞  ∈  𝐴 ) )  ∧  𝑥  ∈  𝐵 )  →  ( ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) )  ↔  ( ( ( 𝑝  ∧  𝑥 )  =   0   ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ralbidva | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  ( 𝑝  ∈  𝐴  ∧  𝑞  ∈  𝐴 ) )  →  ( ∀ 𝑥  ∈  𝐵 ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ( ( 𝑝  ∧  𝑥 )  =   0   ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							2ralbidva | 
							⊢ ( 𝐾  ∈  AtLat  →  ( ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ∀ 𝑥  ∈  𝐵 ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) )  ↔  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ∀ 𝑥  ∈  𝐵 ( ( ( 𝑝  ∧  𝑥 )  =   0   ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							pm5.32i | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ∀ 𝑥  ∈  𝐵 ( ( ¬  𝑝  ≤  𝑥  ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) )  ↔  ( 𝐾  ∈  AtLat  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ∀ 𝑥  ∈  𝐵 ( ( ( 𝑝  ∧  𝑥 )  =   0   ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  | 
						
						
							| 18 | 
							
								7 17
							 | 
							bitri | 
							⊢ ( 𝐾  ∈  CvLat  ↔  ( 𝐾  ∈  AtLat  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑞  ∈  𝐴 ∀ 𝑥  ∈  𝐵 ( ( ( 𝑝  ∧  𝑥 )  =   0   ∧  𝑝  ≤  ( 𝑥  ∨  𝑞 ) )  →  𝑞  ≤  ( 𝑥  ∨  𝑝 ) ) ) )  |