Step |
Hyp |
Ref |
Expression |
1 |
|
iscvlat2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
iscvlat2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
iscvlat2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
iscvlat2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
iscvlat2.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
6 |
|
iscvlat2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
1 2 3 6
|
iscvlat |
⊢ ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) |
9 |
|
simplrl |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑝 ∈ 𝐴 ) |
10 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
11 |
1 2 4 5 6
|
atnle |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑝 ≤ 𝑥 ↔ ( 𝑝 ∧ 𝑥 ) = 0 ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑝 ≤ 𝑥 ↔ ( 𝑝 ∧ 𝑥 ) = 0 ) ) |
13 |
12
|
anbi1d |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) ↔ ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) ) ) |
14 |
13
|
imbi1d |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ↔ ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
15 |
14
|
ralbidva |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
16 |
15
|
2ralbidva |
⊢ ( 𝐾 ∈ AtLat → ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ↔ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
17 |
16
|
pm5.32i |
⊢ ( ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
18 |
7 17
|
bitri |
⊢ ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑝 ∧ 𝑥 ) = 0 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |