Step |
Hyp |
Ref |
Expression |
1 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
2 |
1
|
elin2 |
⊢ ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) ) |
3 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
5 |
4
|
islvec |
⊢ ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |
6 |
5
|
a1i |
⊢ ( 𝑊 ∈ ℂMod → ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) ) |
7 |
3 6
|
mpbirand |
⊢ ( 𝑊 ∈ ℂMod → ( 𝑊 ∈ LVec ↔ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) ↔ ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |
9 |
2 8
|
bitri |
⊢ ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |