| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscvsp.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 2 |  | iscvsp.a | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | iscvsp.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | iscvsp.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | iscvsp.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | iscvs | ⊢ ( 𝑊  ∈  ℂVec  ↔  ( 𝑊  ∈  ℂMod  ∧  ( Scalar ‘ 𝑊 )  ∈  DivRing ) ) | 
						
							| 7 | 1 2 3 4 5 | isclmp | ⊢ ( 𝑊  ∈  ℂMod  ↔  ( ( 𝑊  ∈  Grp  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) )  ∧  ∀ 𝑥  ∈  𝑉 ( ( 1  ·  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝐾 ( ( 𝑦  ·  𝑥 )  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑉 ( 𝑦  ·  ( 𝑥  +  𝑧 ) )  =  ( ( 𝑦  ·  𝑥 )  +  ( 𝑦  ·  𝑧 ) )  ∧  ∀ 𝑧  ∈  𝐾 ( ( ( 𝑧  +  𝑦 )  ·  𝑥 )  =  ( ( 𝑧  ·  𝑥 )  +  ( 𝑦  ·  𝑥 ) )  ∧  ( ( 𝑧  ·  𝑦 )  ·  𝑥 )  =  ( 𝑧  ·  ( 𝑦  ·  𝑥 ) ) ) ) ) ) ) | 
						
							| 8 | 7 | anbi2ci | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( Scalar ‘ 𝑊 )  ∈  DivRing )  ↔  ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  ( ( 𝑊  ∈  Grp  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) )  ∧  ∀ 𝑥  ∈  𝑉 ( ( 1  ·  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝐾 ( ( 𝑦  ·  𝑥 )  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑉 ( 𝑦  ·  ( 𝑥  +  𝑧 ) )  =  ( ( 𝑦  ·  𝑥 )  +  ( 𝑦  ·  𝑧 ) )  ∧  ∀ 𝑧  ∈  𝐾 ( ( ( 𝑧  +  𝑦 )  ·  𝑥 )  =  ( ( 𝑧  ·  𝑥 )  +  ( 𝑦  ·  𝑥 ) )  ∧  ( ( 𝑧  ·  𝑦 )  ·  𝑥 )  =  ( 𝑧  ·  ( 𝑦  ·  𝑥 ) ) ) ) ) ) ) ) | 
						
							| 9 |  | anass | ⊢ ( ( ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  ( 𝑊  ∈  Grp  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) )  ∧  ∀ 𝑥  ∈  𝑉 ( ( 1  ·  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝐾 ( ( 𝑦  ·  𝑥 )  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑉 ( 𝑦  ·  ( 𝑥  +  𝑧 ) )  =  ( ( 𝑦  ·  𝑥 )  +  ( 𝑦  ·  𝑧 ) )  ∧  ∀ 𝑧  ∈  𝐾 ( ( ( 𝑧  +  𝑦 )  ·  𝑥 )  =  ( ( 𝑧  ·  𝑥 )  +  ( 𝑦  ·  𝑥 ) )  ∧  ( ( 𝑧  ·  𝑦 )  ·  𝑥 )  =  ( 𝑧  ·  ( 𝑦  ·  𝑥 ) ) ) ) ) )  ↔  ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  ( ( 𝑊  ∈  Grp  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) )  ∧  ∀ 𝑥  ∈  𝑉 ( ( 1  ·  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝐾 ( ( 𝑦  ·  𝑥 )  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑉 ( 𝑦  ·  ( 𝑥  +  𝑧 ) )  =  ( ( 𝑦  ·  𝑥 )  +  ( 𝑦  ·  𝑧 ) )  ∧  ∀ 𝑧  ∈  𝐾 ( ( ( 𝑧  +  𝑦 )  ·  𝑥 )  =  ( ( 𝑧  ·  𝑥 )  +  ( 𝑦  ·  𝑥 ) )  ∧  ( ( 𝑧  ·  𝑦 )  ·  𝑥 )  =  ( 𝑧  ·  ( 𝑦  ·  𝑥 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | 3anan12 | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) )  ↔  ( 𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  ( 𝑊  ∈  Grp  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) ) | 
						
							| 11 | 10 | anbi2i | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  ( 𝑊  ∈  Grp  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) )  ↔  ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  ( 𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  ( 𝑊  ∈  Grp  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) ) ) | 
						
							| 12 |  | anass | ⊢ ( ( ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  ( 𝑊  ∈  Grp  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) )  ↔  ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  ( 𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  ( 𝑊  ∈  Grp  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) ) ) | 
						
							| 13 | 4 | eqcomi | ⊢ ( Scalar ‘ 𝑊 )  =  𝑆 | 
						
							| 14 | 13 | eleq1i | ⊢ ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ↔  𝑆  ∈  DivRing ) | 
						
							| 15 | 14 | anbi1i | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ↔  ( 𝑆  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) ) ) | 
						
							| 16 | 15 | anbi1i | ⊢ ( ( ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  ( 𝑊  ∈  Grp  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) )  ↔  ( ( 𝑆  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  ( 𝑊  ∈  Grp  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) ) | 
						
							| 17 | 11 12 16 | 3bitr2i | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  ( 𝑊  ∈  Grp  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) )  ↔  ( ( 𝑆  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  ( 𝑊  ∈  Grp  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) ) | 
						
							| 18 |  | 3anan12 | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( 𝑆  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) )  ↔  ( ( 𝑆  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  ( 𝑊  ∈  Grp  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) ) | 
						
							| 19 | 17 18 | bitr4i | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  ( 𝑊  ∈  Grp  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) )  ↔  ( 𝑊  ∈  Grp  ∧  ( 𝑆  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) ) | 
						
							| 20 | 19 | anbi1i | ⊢ ( ( ( ( Scalar ‘ 𝑊 )  ∈  DivRing  ∧  ( 𝑊  ∈  Grp  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) ) )  ∧  ∀ 𝑥  ∈  𝑉 ( ( 1  ·  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝐾 ( ( 𝑦  ·  𝑥 )  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑉 ( 𝑦  ·  ( 𝑥  +  𝑧 ) )  =  ( ( 𝑦  ·  𝑥 )  +  ( 𝑦  ·  𝑧 ) )  ∧  ∀ 𝑧  ∈  𝐾 ( ( ( 𝑧  +  𝑦 )  ·  𝑥 )  =  ( ( 𝑧  ·  𝑥 )  +  ( 𝑦  ·  𝑥 ) )  ∧  ( ( 𝑧  ·  𝑦 )  ·  𝑥 )  =  ( 𝑧  ·  ( 𝑦  ·  𝑥 ) ) ) ) ) )  ↔  ( ( 𝑊  ∈  Grp  ∧  ( 𝑆  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) )  ∧  ∀ 𝑥  ∈  𝑉 ( ( 1  ·  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝐾 ( ( 𝑦  ·  𝑥 )  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑉 ( 𝑦  ·  ( 𝑥  +  𝑧 ) )  =  ( ( 𝑦  ·  𝑥 )  +  ( 𝑦  ·  𝑧 ) )  ∧  ∀ 𝑧  ∈  𝐾 ( ( ( 𝑧  +  𝑦 )  ·  𝑥 )  =  ( ( 𝑧  ·  𝑥 )  +  ( 𝑦  ·  𝑥 ) )  ∧  ( ( 𝑧  ·  𝑦 )  ·  𝑥 )  =  ( 𝑧  ·  ( 𝑦  ·  𝑥 ) ) ) ) ) ) ) | 
						
							| 21 | 8 9 20 | 3bitr2i | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( Scalar ‘ 𝑊 )  ∈  DivRing )  ↔  ( ( 𝑊  ∈  Grp  ∧  ( 𝑆  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) )  ∧  ∀ 𝑥  ∈  𝑉 ( ( 1  ·  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝐾 ( ( 𝑦  ·  𝑥 )  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑉 ( 𝑦  ·  ( 𝑥  +  𝑧 ) )  =  ( ( 𝑦  ·  𝑥 )  +  ( 𝑦  ·  𝑧 ) )  ∧  ∀ 𝑧  ∈  𝐾 ( ( ( 𝑧  +  𝑦 )  ·  𝑥 )  =  ( ( 𝑧  ·  𝑥 )  +  ( 𝑦  ·  𝑥 ) )  ∧  ( ( 𝑧  ·  𝑦 )  ·  𝑥 )  =  ( 𝑧  ·  ( 𝑦  ·  𝑥 ) ) ) ) ) ) ) | 
						
							| 22 | 6 21 | bitri | ⊢ ( 𝑊  ∈  ℂVec  ↔  ( ( 𝑊  ∈  Grp  ∧  ( 𝑆  ∈  DivRing  ∧  𝑆  =  ( ℂfld  ↾s  𝐾 ) )  ∧  𝐾  ∈  ( SubRing ‘ ℂfld ) )  ∧  ∀ 𝑥  ∈  𝑉 ( ( 1  ·  𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  𝐾 ( ( 𝑦  ·  𝑥 )  ∈  𝑉  ∧  ∀ 𝑧  ∈  𝑉 ( 𝑦  ·  ( 𝑥  +  𝑧 ) )  =  ( ( 𝑦  ·  𝑥 )  +  ( 𝑦  ·  𝑧 ) )  ∧  ∀ 𝑧  ∈  𝐾 ( ( ( 𝑧  +  𝑦 )  ·  𝑥 )  =  ( ( 𝑧  ·  𝑥 )  +  ( 𝑦  ·  𝑥 ) )  ∧  ( ( 𝑧  ·  𝑦 )  ·  𝑥 )  =  ( 𝑧  ·  ( 𝑦  ·  𝑥 ) ) ) ) ) ) ) |