Step |
Hyp |
Ref |
Expression |
1 |
|
iscvsp.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
2 |
|
iscvsp.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
iscvsp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
iscvsp.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
5 |
|
iscvsp.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
iscvs |
⊢ ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ) |
7 |
1 2 3 4 5
|
isclmp |
⊢ ( 𝑊 ∈ ℂMod ↔ ( ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |
8 |
7
|
anbi2ci |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ↔ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) ) |
9 |
|
anass |
⊢ ( ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ↔ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) ) |
10 |
|
3anan12 |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
11 |
10
|
anbi2i |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) ) |
12 |
|
anass |
⊢ ( ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) ) |
13 |
4
|
eqcomi |
⊢ ( Scalar ‘ 𝑊 ) = 𝑆 |
14 |
13
|
eleq1i |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ DivRing ↔ 𝑆 ∈ DivRing ) |
15 |
14
|
anbi1i |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ) |
16 |
15
|
anbi1i |
⊢ ( ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
17 |
11 12 16
|
3bitr2i |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
18 |
|
3anan12 |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ ( 𝑊 ∈ Grp ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
19 |
17 18
|
bitr4i |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ↔ ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
20 |
19
|
anbi1i |
⊢ ( ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ ( 𝑊 ∈ Grp ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ↔ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |
21 |
8 9 20
|
3bitr2i |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) ↔ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |
22 |
6 21
|
bitri |
⊢ ( 𝑊 ∈ ℂVec ↔ ( ( 𝑊 ∈ Grp ∧ ( 𝑆 ∈ DivRing ∧ 𝑆 = ( ℂfld ↾s 𝐾 ) ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝑉 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝑦 · 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑧 ∈ 𝑉 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐾 ( ( ( 𝑧 + 𝑦 ) · 𝑥 ) = ( ( 𝑧 · 𝑥 ) + ( 𝑦 · 𝑥 ) ) ∧ ( ( 𝑧 · 𝑦 ) · 𝑥 ) = ( 𝑧 · ( 𝑦 · 𝑥 ) ) ) ) ) ) ) |