Step |
Hyp |
Ref |
Expression |
1 |
|
cycls |
⊢ ( Cycles ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) } |
2 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
4 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) |
5 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ 𝑓 ) = ( ♯ ‘ 𝐹 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ♯ ‘ 𝑓 ) = ( ♯ ‘ 𝐹 ) ) |
7 |
4 6
|
fveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
8 |
3 7
|
eqeq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
9 |
|
relpths |
⊢ Rel ( Paths ‘ 𝐺 ) |
10 |
1 8 9
|
brfvopabrbr |
⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |