| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscyg.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | iscyg.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | iscyg3.e | ⊢ 𝐸  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } | 
						
							| 4 | 1 2 | iscyg | ⊢ ( 𝐺  ∈  CycGrp  ↔  ( 𝐺  ∈  Grp  ∧  ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 ) ) | 
						
							| 5 | 3 | neeq1i | ⊢ ( 𝐸  ≠  ∅  ↔  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 }  ≠  ∅ ) | 
						
							| 6 |  | rabn0 | ⊢ ( { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 }  ≠  ∅  ↔  ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( 𝐸  ≠  ∅  ↔  ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 ) | 
						
							| 8 | 7 | anbi2i | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐸  ≠  ∅ )  ↔  ( 𝐺  ∈  Grp  ∧  ∃ 𝑥  ∈  𝐵 ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 ) ) | 
						
							| 9 | 4 8 | bitr4i | ⊢ ( 𝐺  ∈  CycGrp  ↔  ( 𝐺  ∈  Grp  ∧  𝐸  ≠  ∅ ) ) |