| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscyg.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
iscyg.2 |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
iscyg3.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
| 4 |
1 2
|
iscyg |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |
| 5 |
3
|
neeq1i |
⊢ ( 𝐸 ≠ ∅ ↔ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ≠ ∅ ) |
| 6 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) |
| 7 |
5 6
|
bitri |
⊢ ( 𝐸 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) |
| 8 |
7
|
anbi2i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ≠ ∅ ) ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |
| 9 |
4 8
|
bitr4i |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐸 ≠ ∅ ) ) |